| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | iccpartgtprec.p | . . . . 5
⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | 
| 2 |  | iccpartgtprec.m | . . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 3 |  | iccpart 47403 | . . . . . . 7
⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*
↑m (0...𝑀))
∧ ∀𝑖 ∈
(0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | 
| 4 | 2, 3 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*
↑m (0...𝑀))
∧ ∀𝑖 ∈
(0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | 
| 5 |  | elmapfn 8905 | . . . . . . 7
⊢ (𝑃 ∈ (ℝ*
↑m (0...𝑀))
→ 𝑃 Fn (0...𝑀)) | 
| 6 | 5 | adantr 480 | . . . . . 6
⊢ ((𝑃 ∈ (ℝ*
↑m (0...𝑀))
∧ ∀𝑖 ∈
(0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → 𝑃 Fn (0...𝑀)) | 
| 7 | 4, 6 | biimtrdi 253 | . . . . 5
⊢ (𝜑 → (𝑃 ∈ (RePart‘𝑀) → 𝑃 Fn (0...𝑀))) | 
| 8 | 1, 7 | mpd 15 | . . . 4
⊢ (𝜑 → 𝑃 Fn (0...𝑀)) | 
| 9 |  | fvelrnb 6969 | . . . 4
⊢ (𝑃 Fn (0...𝑀) → (𝑝 ∈ ran 𝑃 ↔ ∃𝑖 ∈ (0...𝑀)(𝑃‘𝑖) = 𝑝)) | 
| 10 | 8, 9 | syl 17 | . . 3
⊢ (𝜑 → (𝑝 ∈ ran 𝑃 ↔ ∃𝑖 ∈ (0...𝑀)(𝑃‘𝑖) = 𝑝)) | 
| 11 | 2 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑀 ∈ ℕ) | 
| 12 | 1 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑃 ∈ (RePart‘𝑀)) | 
| 13 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑖 ∈ (0...𝑀)) | 
| 14 | 11, 12, 13 | iccpartxr 47406 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑃‘𝑖) ∈
ℝ*) | 
| 15 | 2, 1 | iccpartgel 47416 | . . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃‘𝑘)) | 
| 16 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) | 
| 17 | 16 | breq2d 5155 | . . . . . . . . . 10
⊢ (𝑘 = 𝑖 → ((𝑃‘0) ≤ (𝑃‘𝑘) ↔ (𝑃‘0) ≤ (𝑃‘𝑖))) | 
| 18 | 17 | rspcva 3620 | . . . . . . . . 9
⊢ ((𝑖 ∈ (0...𝑀) ∧ ∀𝑘 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃‘𝑘)) → (𝑃‘0) ≤ (𝑃‘𝑖)) | 
| 19 | 18 | expcom 413 | . . . . . . . 8
⊢
(∀𝑘 ∈
(0...𝑀)(𝑃‘0) ≤ (𝑃‘𝑘) → (𝑖 ∈ (0...𝑀) → (𝑃‘0) ≤ (𝑃‘𝑖))) | 
| 20 | 15, 19 | syl 17 | . . . . . . 7
⊢ (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑃‘0) ≤ (𝑃‘𝑖))) | 
| 21 | 20 | imp 406 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑃‘0) ≤ (𝑃‘𝑖)) | 
| 22 | 2, 1 | iccpartleu 47415 | . . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑀)(𝑃‘𝑘) ≤ (𝑃‘𝑀)) | 
| 23 | 16 | breq1d 5153 | . . . . . . . . . 10
⊢ (𝑘 = 𝑖 → ((𝑃‘𝑘) ≤ (𝑃‘𝑀) ↔ (𝑃‘𝑖) ≤ (𝑃‘𝑀))) | 
| 24 | 23 | rspcva 3620 | . . . . . . . . 9
⊢ ((𝑖 ∈ (0...𝑀) ∧ ∀𝑘 ∈ (0...𝑀)(𝑃‘𝑘) ≤ (𝑃‘𝑀)) → (𝑃‘𝑖) ≤ (𝑃‘𝑀)) | 
| 25 | 24 | expcom 413 | . . . . . . . 8
⊢
(∀𝑘 ∈
(0...𝑀)(𝑃‘𝑘) ≤ (𝑃‘𝑀) → (𝑖 ∈ (0...𝑀) → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) | 
| 26 | 22, 25 | syl 17 | . . . . . . 7
⊢ (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) | 
| 27 | 26 | imp 406 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑃‘𝑖) ≤ (𝑃‘𝑀)) | 
| 28 |  | nnnn0 12533 | . . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) | 
| 29 |  | 0elfz 13664 | . . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ0
→ 0 ∈ (0...𝑀)) | 
| 30 | 2, 28, 29 | 3syl 18 | . . . . . . . . . 10
⊢ (𝜑 → 0 ∈ (0...𝑀)) | 
| 31 | 2, 1, 30 | iccpartxr 47406 | . . . . . . . . 9
⊢ (𝜑 → (𝑃‘0) ∈
ℝ*) | 
| 32 |  | nn0fz0 13665 | . . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ0
↔ 𝑀 ∈ (0...𝑀)) | 
| 33 | 28, 32 | sylib 218 | . . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀)) | 
| 34 | 2, 33 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) | 
| 35 | 2, 1, 34 | iccpartxr 47406 | . . . . . . . . 9
⊢ (𝜑 → (𝑃‘𝑀) ∈
ℝ*) | 
| 36 | 31, 35 | jca 511 | . . . . . . . 8
⊢ (𝜑 → ((𝑃‘0) ∈ ℝ* ∧
(𝑃‘𝑀) ∈
ℝ*)) | 
| 37 | 36 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑃‘0) ∈ ℝ* ∧
(𝑃‘𝑀) ∈
ℝ*)) | 
| 38 |  | elicc1 13431 | . . . . . . 7
⊢ (((𝑃‘0) ∈
ℝ* ∧ (𝑃‘𝑀) ∈ ℝ*) → ((𝑃‘𝑖) ∈ ((𝑃‘0)[,](𝑃‘𝑀)) ↔ ((𝑃‘𝑖) ∈ ℝ* ∧ (𝑃‘0) ≤ (𝑃‘𝑖) ∧ (𝑃‘𝑖) ≤ (𝑃‘𝑀)))) | 
| 39 | 37, 38 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑃‘𝑖) ∈ ((𝑃‘0)[,](𝑃‘𝑀)) ↔ ((𝑃‘𝑖) ∈ ℝ* ∧ (𝑃‘0) ≤ (𝑃‘𝑖) ∧ (𝑃‘𝑖) ≤ (𝑃‘𝑀)))) | 
| 40 | 14, 21, 27, 39 | mpbir3and 1343 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑃‘𝑖) ∈ ((𝑃‘0)[,](𝑃‘𝑀))) | 
| 41 |  | eleq1 2829 | . . . . 5
⊢ ((𝑃‘𝑖) = 𝑝 → ((𝑃‘𝑖) ∈ ((𝑃‘0)[,](𝑃‘𝑀)) ↔ 𝑝 ∈ ((𝑃‘0)[,](𝑃‘𝑀)))) | 
| 42 | 40, 41 | syl5ibcom 245 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑃‘𝑖) = 𝑝 → 𝑝 ∈ ((𝑃‘0)[,](𝑃‘𝑀)))) | 
| 43 | 42 | rexlimdva 3155 | . . 3
⊢ (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑃‘𝑖) = 𝑝 → 𝑝 ∈ ((𝑃‘0)[,](𝑃‘𝑀)))) | 
| 44 | 10, 43 | sylbid 240 | . 2
⊢ (𝜑 → (𝑝 ∈ ran 𝑃 → 𝑝 ∈ ((𝑃‘0)[,](𝑃‘𝑀)))) | 
| 45 | 44 | ssrdv 3989 | 1
⊢ (𝜑 → ran 𝑃 ⊆ ((𝑃‘0)[,](𝑃‘𝑀))) |