![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartxr | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
iccpartxr.i | ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
Ref | Expression |
---|---|
iccpartxr | ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
2 | iccpartgtprec.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
3 | iccpart 42192 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
5 | 1, 4 | mpbid 224 | . . . 4 ⊢ (𝜑 → (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
6 | 5 | simpld 489 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀))) |
7 | elmapi 8117 | . . 3 ⊢ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) → 𝑃:(0...𝑀)⟶ℝ*) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝑃:(0...𝑀)⟶ℝ*) |
9 | iccpartxr.i | . 2 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) | |
10 | 8, 9 | ffvelrnd 6586 | 1 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 ∀wral 3089 class class class wbr 4843 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ↑𝑚 cmap 8095 0cc0 10224 1c1 10225 + caddc 10227 ℝ*cxr 10362 < clt 10363 ℕcn 11312 ...cfz 12580 ..^cfzo 12720 RePartciccp 42189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-map 8097 df-iccp 42190 |
This theorem is referenced by: iccpartipre 42197 iccpartiltu 42198 iccpartigtl 42199 iccpartlt 42200 iccpartleu 42204 iccpartgel 42205 iccpartrn 42206 iccelpart 42209 iccpartiun 42210 icceuelpartlem 42211 icceuelpart 42212 iccpartdisj 42213 iccpartnel 42214 bgoldbtbndlem2 42476 |
Copyright terms: Public domain | W3C validator |