Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartxr Structured version   Visualization version   GIF version

Theorem iccpartxr 47424
Description: If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
iccpartxr.i (𝜑𝐼 ∈ (0...𝑀))
Assertion
Ref Expression
iccpartxr (𝜑 → (𝑃𝐼) ∈ ℝ*)

Proof of Theorem iccpartxr
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.p . . . . 5 (𝜑𝑃 ∈ (RePart‘𝑀))
2 iccpartgtprec.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
3 iccpart 47421 . . . . . 6 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
42, 3syl 17 . . . . 5 (𝜑 → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
51, 4mpbid 232 . . . 4 (𝜑 → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))))
65simpld 494 . . 3 (𝜑𝑃 ∈ (ℝ*m (0...𝑀)))
7 elmapi 8825 . . 3 (𝑃 ∈ (ℝ*m (0...𝑀)) → 𝑃:(0...𝑀)⟶ℝ*)
86, 7syl 17 . 2 (𝜑𝑃:(0...𝑀)⟶ℝ*)
9 iccpartxr.i . 2 (𝜑𝐼 ∈ (0...𝑀))
108, 9ffvelcdmd 7060 1 (𝜑 → (𝑃𝐼) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cn 12193  ...cfz 13475  ..^cfzo 13622  RePartciccp 47418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-iccp 47419
This theorem is referenced by:  iccpartipre  47426  iccpartiltu  47427  iccpartigtl  47428  iccpartlt  47429  iccpartleu  47433  iccpartgel  47434  iccpartrn  47435  iccelpart  47438  iccpartiun  47439  icceuelpartlem  47440  icceuelpart  47441  iccpartdisj  47442  iccpartnel  47443  bgoldbtbndlem2  47811
  Copyright terms: Public domain W3C validator