Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartxr Structured version   Visualization version   GIF version

Theorem iccpartxr 46077
Description: If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (πœ‘ β†’ 𝑀 ∈ β„•)
iccpartgtprec.p (πœ‘ β†’ 𝑃 ∈ (RePartβ€˜π‘€))
iccpartxr.i (πœ‘ β†’ 𝐼 ∈ (0...𝑀))
Assertion
Ref Expression
iccpartxr (πœ‘ β†’ (π‘ƒβ€˜πΌ) ∈ ℝ*)

Proof of Theorem iccpartxr
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.p . . . . 5 (πœ‘ β†’ 𝑃 ∈ (RePartβ€˜π‘€))
2 iccpartgtprec.m . . . . . 6 (πœ‘ β†’ 𝑀 ∈ β„•)
3 iccpart 46074 . . . . . 6 (𝑀 ∈ β„• β†’ (𝑃 ∈ (RePartβ€˜π‘€) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘ƒβ€˜π‘–) < (π‘ƒβ€˜(𝑖 + 1)))))
42, 3syl 17 . . . . 5 (πœ‘ β†’ (𝑃 ∈ (RePartβ€˜π‘€) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘ƒβ€˜π‘–) < (π‘ƒβ€˜(𝑖 + 1)))))
51, 4mpbid 231 . . . 4 (πœ‘ β†’ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘ƒβ€˜π‘–) < (π‘ƒβ€˜(𝑖 + 1))))
65simpld 495 . . 3 (πœ‘ β†’ 𝑃 ∈ (ℝ* ↑m (0...𝑀)))
7 elmapi 8842 . . 3 (𝑃 ∈ (ℝ* ↑m (0...𝑀)) β†’ 𝑃:(0...𝑀)βŸΆβ„*)
86, 7syl 17 . 2 (πœ‘ β†’ 𝑃:(0...𝑀)βŸΆβ„*)
9 iccpartxr.i . 2 (πœ‘ β†’ 𝐼 ∈ (0...𝑀))
108, 9ffvelcdmd 7087 1 (πœ‘ β†’ (π‘ƒβ€˜πΌ) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5148  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ↑m cmap 8819  0cc0 11109  1c1 11110   + caddc 11112  β„*cxr 11246   < clt 11247  β„•cn 12211  ...cfz 13483  ..^cfzo 13626  RePartciccp 46071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-map 8821  df-iccp 46072
This theorem is referenced by:  iccpartipre  46079  iccpartiltu  46080  iccpartigtl  46081  iccpartlt  46082  iccpartleu  46086  iccpartgel  46087  iccpartrn  46088  iccelpart  46091  iccpartiun  46092  icceuelpartlem  46093  icceuelpart  46094  iccpartdisj  46095  iccpartnel  46096  bgoldbtbndlem2  46464
  Copyright terms: Public domain W3C validator