Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartxr Structured version   Visualization version   GIF version

Theorem iccpartxr 47293
Description: If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
iccpartxr.i (𝜑𝐼 ∈ (0...𝑀))
Assertion
Ref Expression
iccpartxr (𝜑 → (𝑃𝐼) ∈ ℝ*)

Proof of Theorem iccpartxr
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.p . . . . 5 (𝜑𝑃 ∈ (RePart‘𝑀))
2 iccpartgtprec.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
3 iccpart 47290 . . . . . 6 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
42, 3syl 17 . . . . 5 (𝜑 → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
51, 4mpbid 232 . . . 4 (𝜑 → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))))
65simpld 494 . . 3 (𝜑𝑃 ∈ (ℝ*m (0...𝑀)))
7 elmapi 8907 . . 3 (𝑃 ∈ (ℝ*m (0...𝑀)) → 𝑃:(0...𝑀)⟶ℝ*)
86, 7syl 17 . 2 (𝜑𝑃:(0...𝑀)⟶ℝ*)
9 iccpartxr.i . 2 (𝜑𝐼 ∈ (0...𝑀))
108, 9ffvelcdmd 7119 1 (𝜑 → (𝑃𝐼) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cn 12293  ...cfz 13567  ..^cfzo 13711  RePartciccp 47287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-iccp 47288
This theorem is referenced by:  iccpartipre  47295  iccpartiltu  47296  iccpartigtl  47297  iccpartlt  47298  iccpartleu  47302  iccpartgel  47303  iccpartrn  47304  iccelpart  47307  iccpartiun  47308  icceuelpartlem  47309  icceuelpart  47310  iccpartdisj  47311  iccpartnel  47312  bgoldbtbndlem2  47680
  Copyright terms: Public domain W3C validator