Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartxr Structured version   Visualization version   GIF version

Theorem iccpartxr 45130
Description: If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
iccpartxr.i (𝜑𝐼 ∈ (0...𝑀))
Assertion
Ref Expression
iccpartxr (𝜑 → (𝑃𝐼) ∈ ℝ*)

Proof of Theorem iccpartxr
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.p . . . . 5 (𝜑𝑃 ∈ (RePart‘𝑀))
2 iccpartgtprec.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
3 iccpart 45127 . . . . . 6 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
42, 3syl 17 . . . . 5 (𝜑 → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
51, 4mpbid 231 . . . 4 (𝜑 → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))))
65simpld 495 . . 3 (𝜑𝑃 ∈ (ℝ*m (0...𝑀)))
7 elmapi 8683 . . 3 (𝑃 ∈ (ℝ*m (0...𝑀)) → 𝑃:(0...𝑀)⟶ℝ*)
86, 7syl 17 . 2 (𝜑𝑃:(0...𝑀)⟶ℝ*)
9 iccpartxr.i . 2 (𝜑𝐼 ∈ (0...𝑀))
108, 9ffvelcdmd 6999 1 (𝜑 → (𝑃𝐼) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2105  wral 3062   class class class wbr 5085  wf 6459  cfv 6463  (class class class)co 7313  m cmap 8661  0cc0 10941  1c1 10942   + caddc 10944  *cxr 11078   < clt 11079  cn 12043  ...cfz 13309  ..^cfzo 13452  RePartciccp 45124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-fv 6471  df-ov 7316  df-oprab 7317  df-mpo 7318  df-1st 7874  df-2nd 7875  df-map 8663  df-iccp 45125
This theorem is referenced by:  iccpartipre  45132  iccpartiltu  45133  iccpartigtl  45134  iccpartlt  45135  iccpartleu  45139  iccpartgel  45140  iccpartrn  45141  iccelpart  45144  iccpartiun  45145  icceuelpartlem  45146  icceuelpart  45147  iccpartdisj  45148  iccpartnel  45149  bgoldbtbndlem2  45517
  Copyright terms: Public domain W3C validator