| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartxr | Structured version Visualization version GIF version | ||
| Description: If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.) |
| Ref | Expression |
|---|---|
| iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
| iccpartxr.i | ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
| Ref | Expression |
|---|---|
| iccpartxr | ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpartgtprec.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
| 2 | iccpartgtprec.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 3 | iccpart 47417 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
| 5 | 1, 4 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
| 6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℝ* ↑m (0...𝑀))) |
| 7 | elmapi 8822 | . . 3 ⊢ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) → 𝑃:(0...𝑀)⟶ℝ*) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝑃:(0...𝑀)⟶ℝ*) |
| 9 | iccpartxr.i | . 2 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) | |
| 10 | 8, 9 | ffvelcdmd 7057 | 1 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 0cc0 11068 1c1 11069 + caddc 11071 ℝ*cxr 11207 < clt 11208 ℕcn 12186 ...cfz 13468 ..^cfzo 13615 RePartciccp 47414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-iccp 47415 |
| This theorem is referenced by: iccpartipre 47422 iccpartiltu 47423 iccpartigtl 47424 iccpartlt 47425 iccpartleu 47429 iccpartgel 47430 iccpartrn 47431 iccelpart 47434 iccpartiun 47435 icceuelpartlem 47436 icceuelpart 47437 iccpartdisj 47438 iccpartnel 47439 bgoldbtbndlem2 47807 |
| Copyright terms: Public domain | W3C validator |