| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartxr | Structured version Visualization version GIF version | ||
| Description: If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.) |
| Ref | Expression |
|---|---|
| iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
| iccpartxr.i | ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
| Ref | Expression |
|---|---|
| iccpartxr | ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpartgtprec.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
| 2 | iccpartgtprec.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 3 | iccpart 47421 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
| 5 | 1, 4 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
| 6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℝ* ↑m (0...𝑀))) |
| 7 | elmapi 8825 | . . 3 ⊢ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) → 𝑃:(0...𝑀)⟶ℝ*) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝑃:(0...𝑀)⟶ℝ*) |
| 9 | iccpartxr.i | . 2 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) | |
| 10 | 8, 9 | ffvelcdmd 7060 | 1 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 0cc0 11075 1c1 11076 + caddc 11078 ℝ*cxr 11214 < clt 11215 ℕcn 12193 ...cfz 13475 ..^cfzo 13622 RePartciccp 47418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-iccp 47419 |
| This theorem is referenced by: iccpartipre 47426 iccpartiltu 47427 iccpartigtl 47428 iccpartlt 47429 iccpartleu 47433 iccpartgel 47434 iccpartrn 47435 iccelpart 47438 iccpartiun 47439 icceuelpartlem 47440 icceuelpart 47441 iccpartdisj 47442 iccpartnel 47443 bgoldbtbndlem2 47811 |
| Copyright terms: Public domain | W3C validator |