Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartxr | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
iccpartxr.i | ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
Ref | Expression |
---|---|
iccpartxr | ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
2 | iccpartgtprec.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
3 | iccpart 45127 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
5 | 1, 4 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
6 | 5 | simpld 495 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℝ* ↑m (0...𝑀))) |
7 | elmapi 8683 | . . 3 ⊢ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) → 𝑃:(0...𝑀)⟶ℝ*) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝑃:(0...𝑀)⟶ℝ*) |
9 | iccpartxr.i | . 2 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) | |
10 | 8, 9 | ffvelcdmd 6999 | 1 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 ∀wral 3062 class class class wbr 5085 ⟶wf 6459 ‘cfv 6463 (class class class)co 7313 ↑m cmap 8661 0cc0 10941 1c1 10942 + caddc 10944 ℝ*cxr 11078 < clt 11079 ℕcn 12043 ...cfz 13309 ..^cfzo 13452 RePartciccp 45124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-fv 6471 df-ov 7316 df-oprab 7317 df-mpo 7318 df-1st 7874 df-2nd 7875 df-map 8663 df-iccp 45125 |
This theorem is referenced by: iccpartipre 45132 iccpartiltu 45133 iccpartigtl 45134 iccpartlt 45135 iccpartleu 45139 iccpartgel 45140 iccpartrn 45141 iccelpart 45144 iccpartiun 45145 icceuelpartlem 45146 icceuelpart 45147 iccpartdisj 45148 iccpartnel 45149 bgoldbtbndlem2 45517 |
Copyright terms: Public domain | W3C validator |