| Step | Hyp | Ref
| Expression |
| 1 | | peano2nn 12278 |
. . . 4
⊢ (𝑀 ∈ ℕ → (𝑀 + 1) ∈
ℕ) |
| 2 | | iccpart 47403 |
. . . 4
⊢ ((𝑀 + 1) ∈ ℕ →
(𝑃 ∈
(RePart‘(𝑀 + 1))
↔ (𝑃 ∈
(ℝ* ↑m (0...(𝑀 + 1))) ∧ ∀𝑖 ∈ (0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘(𝑀 + 1)) ↔ (𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ ∀𝑖
∈ (0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
| 4 | | simpl 482 |
. . . . . 6
⊢ ((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ ∀𝑖
∈ (0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → 𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1)))) |
| 5 | | nnz 12634 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
| 6 | | uzid 12893 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 7 | 5, 6 | syl 17 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 8 | | peano2uz 12943 |
. . . . . . . 8
⊢ (𝑀 ∈
(ℤ≥‘𝑀) → (𝑀 + 1) ∈
(ℤ≥‘𝑀)) |
| 9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → (𝑀 + 1) ∈
(ℤ≥‘𝑀)) |
| 10 | | fzss2 13604 |
. . . . . . 7
⊢ ((𝑀 + 1) ∈
(ℤ≥‘𝑀) → (0...𝑀) ⊆ (0...(𝑀 + 1))) |
| 11 | 9, 10 | syl 17 |
. . . . . 6
⊢ (𝑀 ∈ ℕ →
(0...𝑀) ⊆ (0...(𝑀 + 1))) |
| 12 | | elmapssres 8907 |
. . . . . 6
⊢ ((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ (0...𝑀)
⊆ (0...(𝑀 + 1)))
→ (𝑃 ↾
(0...𝑀)) ∈
(ℝ* ↑m (0...𝑀))) |
| 13 | 4, 11, 12 | syl2anr 597 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ (𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ ∀𝑖
∈ (0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) → (𝑃 ↾ (0...𝑀)) ∈ (ℝ*
↑m (0...𝑀))) |
| 14 | | fzoss2 13727 |
. . . . . . . . . 10
⊢ ((𝑀 + 1) ∈
(ℤ≥‘𝑀) → (0..^𝑀) ⊆ (0..^(𝑀 + 1))) |
| 15 | 9, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ →
(0..^𝑀) ⊆ (0..^(𝑀 + 1))) |
| 16 | | ssralv 4052 |
. . . . . . . . 9
⊢
((0..^𝑀) ⊆
(0..^(𝑀 + 1)) →
(∀𝑖 ∈
(0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
| 17 | 15, 16 | syl 17 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ →
(∀𝑖 ∈
(0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
| 18 | 17 | adantld 490 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → ((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ ∀𝑖
∈ (0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
| 19 | 18 | imp 406 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ (𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ ∀𝑖
∈ (0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) |
| 20 | | fzossfz 13718 |
. . . . . . . . . . . . . . 15
⊢
(0..^𝑀) ⊆
(0...𝑀) |
| 21 | 20 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ 𝑀 ∈
ℕ) → (0..^𝑀)
⊆ (0...𝑀)) |
| 22 | 21 | sselda 3983 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ 𝑀 ∈
ℕ) ∧ 𝑖 ∈
(0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
| 23 | | fvres 6925 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (0...𝑀) → ((𝑃 ↾ (0...𝑀))‘𝑖) = (𝑃‘𝑖)) |
| 24 | 23 | eqcomd 2743 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0...𝑀) → (𝑃‘𝑖) = ((𝑃 ↾ (0...𝑀))‘𝑖)) |
| 25 | 22, 24 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ 𝑀 ∈
ℕ) ∧ 𝑖 ∈
(0..^𝑀)) → (𝑃‘𝑖) = ((𝑃 ↾ (0...𝑀))‘𝑖)) |
| 26 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ 𝑀 ∈
ℕ) ∧ 𝑖 ∈
(0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
| 27 | | elfzouz 13703 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈
(ℤ≥‘0)) |
| 28 | 27 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ 𝑀 ∈
ℕ) ∧ 𝑖 ∈
(0..^𝑀)) → 𝑖 ∈
(ℤ≥‘0)) |
| 29 | | fzofzp1b 13804 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈
(ℤ≥‘0) → (𝑖 ∈ (0..^𝑀) ↔ (𝑖 + 1) ∈ (0...𝑀))) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ 𝑀 ∈
ℕ) ∧ 𝑖 ∈
(0..^𝑀)) → (𝑖 ∈ (0..^𝑀) ↔ (𝑖 + 1) ∈ (0...𝑀))) |
| 31 | 26, 30 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ 𝑀 ∈
ℕ) ∧ 𝑖 ∈
(0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
| 32 | | fvres 6925 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 + 1) ∈ (0...𝑀) → ((𝑃 ↾ (0...𝑀))‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1))) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ 𝑀 ∈
ℕ) ∧ 𝑖 ∈
(0..^𝑀)) → ((𝑃 ↾ (0...𝑀))‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1))) |
| 34 | 33 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ 𝑀 ∈
ℕ) ∧ 𝑖 ∈
(0..^𝑀)) → (𝑃‘(𝑖 + 1)) = ((𝑃 ↾ (0...𝑀))‘(𝑖 + 1))) |
| 35 | 25, 34 | breq12d 5156 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ 𝑀 ∈
ℕ) ∧ 𝑖 ∈
(0..^𝑀)) → ((𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) ↔ ((𝑃 ↾ (0...𝑀))‘𝑖) < ((𝑃 ↾ (0...𝑀))‘(𝑖 + 1)))) |
| 36 | 35 | biimpd 229 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ 𝑀 ∈
ℕ) ∧ 𝑖 ∈
(0..^𝑀)) → ((𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) → ((𝑃 ↾ (0...𝑀))‘𝑖) < ((𝑃 ↾ (0...𝑀))‘(𝑖 + 1)))) |
| 37 | 36 | ralimdva 3167 |
. . . . . . . . 9
⊢ ((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ 𝑀 ∈
ℕ) → (∀𝑖
∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) → ∀𝑖 ∈ (0..^𝑀)((𝑃 ↾ (0...𝑀))‘𝑖) < ((𝑃 ↾ (0...𝑀))‘(𝑖 + 1)))) |
| 38 | 37 | ex 412 |
. . . . . . . 8
⊢ (𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) → (𝑀 ∈
ℕ → (∀𝑖
∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) → ∀𝑖 ∈ (0..^𝑀)((𝑃 ↾ (0...𝑀))‘𝑖) < ((𝑃 ↾ (0...𝑀))‘(𝑖 + 1))))) |
| 39 | 38 | adantr 480 |
. . . . . . 7
⊢ ((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ ∀𝑖
∈ (0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → (𝑀 ∈ ℕ → (∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) → ∀𝑖 ∈ (0..^𝑀)((𝑃 ↾ (0...𝑀))‘𝑖) < ((𝑃 ↾ (0...𝑀))‘(𝑖 + 1))))) |
| 40 | 39 | impcom 407 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ (𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ ∀𝑖
∈ (0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) → (∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) → ∀𝑖 ∈ (0..^𝑀)((𝑃 ↾ (0...𝑀))‘𝑖) < ((𝑃 ↾ (0...𝑀))‘(𝑖 + 1)))) |
| 41 | 19, 40 | mpd 15 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ (𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ ∀𝑖
∈ (0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) → ∀𝑖 ∈ (0..^𝑀)((𝑃 ↾ (0...𝑀))‘𝑖) < ((𝑃 ↾ (0...𝑀))‘(𝑖 + 1))) |
| 42 | | iccpart 47403 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → ((𝑃 ↾ (0...𝑀)) ∈ (RePart‘𝑀) ↔ ((𝑃 ↾ (0...𝑀)) ∈ (ℝ*
↑m (0...𝑀))
∧ ∀𝑖 ∈
(0..^𝑀)((𝑃 ↾ (0...𝑀))‘𝑖) < ((𝑃 ↾ (0...𝑀))‘(𝑖 + 1))))) |
| 43 | 42 | adantr 480 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ (𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ ∀𝑖
∈ (0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) → ((𝑃 ↾ (0...𝑀)) ∈ (RePart‘𝑀) ↔ ((𝑃 ↾ (0...𝑀)) ∈ (ℝ*
↑m (0...𝑀))
∧ ∀𝑖 ∈
(0..^𝑀)((𝑃 ↾ (0...𝑀))‘𝑖) < ((𝑃 ↾ (0...𝑀))‘(𝑖 + 1))))) |
| 44 | 13, 41, 43 | mpbir2and 713 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ (𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ ∀𝑖
∈ (0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) → (𝑃 ↾ (0...𝑀)) ∈ (RePart‘𝑀)) |
| 45 | 44 | ex 412 |
. . 3
⊢ (𝑀 ∈ ℕ → ((𝑃 ∈ (ℝ*
↑m (0...(𝑀
+ 1))) ∧ ∀𝑖
∈ (0..^(𝑀 + 1))(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → (𝑃 ↾ (0...𝑀)) ∈ (RePart‘𝑀))) |
| 46 | 3, 45 | sylbid 240 |
. 2
⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘(𝑀 + 1)) → (𝑃 ↾ (0...𝑀)) ∈ (RePart‘𝑀))) |
| 47 | 46 | imp 406 |
1
⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘(𝑀 + 1))) → (𝑃 ↾ (0...𝑀)) ∈ (RePart‘𝑀)) |