Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idl0cl Structured version   Visualization version   GIF version

Theorem idl0cl 38000
Description: An ideal contains 0. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idl0cl.1 𝐺 = (1st𝑅)
idl0cl.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
idl0cl ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑍𝐼)

Proof of Theorem idl0cl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idl0cl.1 . . . 4 𝐺 = (1st𝑅)
2 eqid 2729 . . . 4 (2nd𝑅) = (2nd𝑅)
3 eqid 2729 . . . 4 ran 𝐺 = ran 𝐺
4 idl0cl.2 . . . 4 𝑍 = (GId‘𝐺)
51, 2, 3, 4isidl 37996 . . 3 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ ran 𝐺𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)))))
65biimpa 476 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ ran 𝐺𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼))))
76simp2d 1143 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑍𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3905  ran crn 5624  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  GIdcgi 30452  RingOpscrngo 37876  Idlcidl 37989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-idl 37992
This theorem is referenced by:  divrngidl  38010  intidl  38011  unichnidl  38013  maxidln0  38027
  Copyright terms: Public domain W3C validator