Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idl0cl | Structured version Visualization version GIF version |
Description: An ideal contains 0. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
idl0cl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
idl0cl.2 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
idl0cl | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑍 ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idl0cl.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | eqid 2738 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
3 | eqid 2738 | . . . 4 ⊢ ran 𝐺 = ran 𝐺 | |
4 | idl0cl.2 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
5 | 1, 2, 3, 4 | isidl 35795 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ ran 𝐺 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼))))) |
6 | 5 | biimpa 480 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ ran 𝐺 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼)))) |
7 | 6 | simp2d 1144 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑍 ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∀wral 3053 ⊆ wss 3843 ran crn 5526 ‘cfv 6339 (class class class)co 7170 1st c1st 7712 2nd c2nd 7713 GIdcgi 28425 RingOpscrngo 35675 Idlcidl 35788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-iota 6297 df-fun 6341 df-fv 6347 df-ov 7173 df-idl 35791 |
This theorem is referenced by: divrngidl 35809 intidl 35810 unichnidl 35812 maxidln0 35826 |
Copyright terms: Public domain | W3C validator |