Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idladdcl Structured version   Visualization version   GIF version

Theorem idladdcl 37525
Description: An ideal is closed under addition. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
idladdcl.1 𝐺 = (1st𝑅)
Assertion
Ref Expression
idladdcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼)

Proof of Theorem idladdcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idladdcl.1 . . . . . 6 𝐺 = (1st𝑅)
2 eqid 2728 . . . . . 6 (2nd𝑅) = (2nd𝑅)
3 eqid 2728 . . . . . 6 ran 𝐺 = ran 𝐺
4 eqid 2728 . . . . . 6 (GId‘𝐺) = (GId‘𝐺)
51, 2, 3, 4isidl 37520 . . . . 5 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ ran 𝐺 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)))))
65biimpa 475 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ ran 𝐺 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼))))
76simp3d 1141 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)))
8 simpl 481 . . . 4 ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)) → ∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼)
98ralimi 3080 . . 3 (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)) → ∀𝑥𝐼𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼)
107, 9syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼)
11 oveq1 7433 . . . 4 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
1211eleq1d 2814 . . 3 (𝑥 = 𝐴 → ((𝑥𝐺𝑦) ∈ 𝐼 ↔ (𝐴𝐺𝑦) ∈ 𝐼))
13 oveq2 7434 . . . 4 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1413eleq1d 2814 . . 3 (𝑦 = 𝐵 → ((𝐴𝐺𝑦) ∈ 𝐼 ↔ (𝐴𝐺𝐵) ∈ 𝐼))
1512, 14rspc2v 3622 . 2 ((𝐴𝐼𝐵𝐼) → (∀𝑥𝐼𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 → (𝐴𝐺𝐵) ∈ 𝐼))
1610, 15mpan9 505 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058  wss 3949  ran crn 5683  cfv 6553  (class class class)co 7426  1st c1st 7997  2nd c2nd 7998  GIdcgi 30320  RingOpscrngo 37400  Idlcidl 37513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6505  df-fun 6555  df-fv 6561  df-ov 7429  df-idl 37516
This theorem is referenced by:  idlsubcl  37529  intidl  37535  unichnidl  37537
  Copyright terms: Public domain W3C validator