Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idladdcl Structured version   Visualization version   GIF version

Theorem idladdcl 34360
Description: An ideal is closed under addition. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
idladdcl.1 𝐺 = (1st𝑅)
Assertion
Ref Expression
idladdcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼)

Proof of Theorem idladdcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idladdcl.1 . . . . . 6 𝐺 = (1st𝑅)
2 eqid 2825 . . . . . 6 (2nd𝑅) = (2nd𝑅)
3 eqid 2825 . . . . . 6 ran 𝐺 = ran 𝐺
4 eqid 2825 . . . . . 6 (GId‘𝐺) = (GId‘𝐺)
51, 2, 3, 4isidl 34355 . . . . 5 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ ran 𝐺 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)))))
65biimpa 470 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ ran 𝐺 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼))))
76simp3d 1180 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)))
8 simpl 476 . . . 4 ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)) → ∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼)
98ralimi 3161 . . 3 (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)) → ∀𝑥𝐼𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼)
107, 9syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼)
11 oveq1 6912 . . . 4 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
1211eleq1d 2891 . . 3 (𝑥 = 𝐴 → ((𝑥𝐺𝑦) ∈ 𝐼 ↔ (𝐴𝐺𝑦) ∈ 𝐼))
13 oveq2 6913 . . . 4 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1413eleq1d 2891 . . 3 (𝑦 = 𝐵 → ((𝐴𝐺𝑦) ∈ 𝐼 ↔ (𝐴𝐺𝐵) ∈ 𝐼))
1512, 14rspc2v 3539 . 2 ((𝐴𝐼𝐵𝐼) → (∀𝑥𝐼𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 → (𝐴𝐺𝐵) ∈ 𝐼))
1610, 15mpan9 504 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3117  wss 3798  ran crn 5343  cfv 6123  (class class class)co 6905  1st c1st 7426  2nd c2nd 7427  GIdcgi 27900  RingOpscrngo 34235  Idlcidl 34348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-iota 6086  df-fun 6125  df-fv 6131  df-ov 6908  df-idl 34351
This theorem is referenced by:  idlsubcl  34364  intidl  34370  unichnidl  34372
  Copyright terms: Public domain W3C validator