![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idladdcl | Structured version Visualization version GIF version |
Description: An ideal is closed under addition. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
idladdcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
idladdcl | ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idladdcl.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | eqid 2733 | . . . . . 6 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
3 | eqid 2733 | . . . . . 6 ⊢ ran 𝐺 = ran 𝐺 | |
4 | eqid 2733 | . . . . . 6 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
5 | 1, 2, 3, 4 | isidl 36871 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ ran 𝐺 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼))))) |
6 | 5 | biimpa 478 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ ran 𝐺 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼)))) |
7 | 6 | simp3d 1145 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼))) |
8 | simpl 484 | . . . 4 ⊢ ((∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼)) → ∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼) | |
9 | 8 | ralimi 3084 | . . 3 ⊢ (∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼)) → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼) |
10 | 7, 9 | syl 17 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼) |
11 | oveq1 7413 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) | |
12 | 11 | eleq1d 2819 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑦) ∈ 𝐼 ↔ (𝐴𝐺𝑦) ∈ 𝐼)) |
13 | oveq2 7414 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) | |
14 | 13 | eleq1d 2819 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐺𝑦) ∈ 𝐼 ↔ (𝐴𝐺𝐵) ∈ 𝐼)) |
15 | 12, 14 | rspc2v 3622 | . 2 ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼) → (∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 → (𝐴𝐺𝐵) ∈ 𝐼)) |
16 | 10, 15 | mpan9 508 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ⊆ wss 3948 ran crn 5677 ‘cfv 6541 (class class class)co 7406 1st c1st 7970 2nd c2nd 7971 GIdcgi 29731 RingOpscrngo 36751 Idlcidl 36864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6493 df-fun 6543 df-fv 6549 df-ov 7409 df-idl 36867 |
This theorem is referenced by: idlsubcl 36880 intidl 36886 unichnidl 36888 |
Copyright terms: Public domain | W3C validator |