Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idladdcl Structured version   Visualization version   GIF version

 Description: An ideal is closed under addition. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
Assertion
Ref Expression
idladdcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼)

Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idladdcl.1 . . . . . 6 𝐺 = (1st𝑅)
2 eqid 2758 . . . . . 6 (2nd𝑅) = (2nd𝑅)
3 eqid 2758 . . . . . 6 ran 𝐺 = ran 𝐺
4 eqid 2758 . . . . . 6 (GId‘𝐺) = (GId‘𝐺)
51, 2, 3, 4isidl 35766 . . . . 5 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ ran 𝐺 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)))))
65biimpa 480 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ ran 𝐺 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼))))
76simp3d 1141 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)))
8 simpl 486 . . . 4 ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)) → ∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼)
98ralimi 3092 . . 3 (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)) → ∀𝑥𝐼𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼)
107, 9syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼)
11 oveq1 7163 . . . 4 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
1211eleq1d 2836 . . 3 (𝑥 = 𝐴 → ((𝑥𝐺𝑦) ∈ 𝐼 ↔ (𝐴𝐺𝑦) ∈ 𝐼))
13 oveq2 7164 . . . 4 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1413eleq1d 2836 . . 3 (𝑦 = 𝐵 → ((𝐴𝐺𝑦) ∈ 𝐼 ↔ (𝐴𝐺𝐵) ∈ 𝐼))
1512, 14rspc2v 3553 . 2 ((𝐴𝐼𝐵𝐼) → (∀𝑥𝐼𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 → (𝐴𝐺𝐵) ∈ 𝐼))
1610, 15mpan9 510 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070   ⊆ wss 3860  ran crn 5529  ‘cfv 6340  (class class class)co 7156  1st c1st 7697  2nd c2nd 7698  GIdcgi 28385  RingOpscrngo 35646  Idlcidl 35759 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-iota 6299  df-fun 6342  df-fv 6348  df-ov 7159  df-idl 35762 This theorem is referenced by:  idlsubcl  35775  intidl  35781  unichnidl  35783
 Copyright terms: Public domain W3C validator