![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idladdcl | Structured version Visualization version GIF version |
Description: An ideal is closed under addition. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
idladdcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
idladdcl | ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idladdcl.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | eqid 2728 | . . . . . 6 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
3 | eqid 2728 | . . . . . 6 ⊢ ran 𝐺 = ran 𝐺 | |
4 | eqid 2728 | . . . . . 6 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
5 | 1, 2, 3, 4 | isidl 37520 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ ran 𝐺 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼))))) |
6 | 5 | biimpa 475 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ ran 𝐺 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼)))) |
7 | 6 | simp3d 1141 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼))) |
8 | simpl 481 | . . . 4 ⊢ ((∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼)) → ∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼) | |
9 | 8 | ralimi 3080 | . . 3 ⊢ (∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼)) → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼) |
10 | 7, 9 | syl 17 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼) |
11 | oveq1 7433 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) | |
12 | 11 | eleq1d 2814 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑦) ∈ 𝐼 ↔ (𝐴𝐺𝑦) ∈ 𝐼)) |
13 | oveq2 7434 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) | |
14 | 13 | eleq1d 2814 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐺𝑦) ∈ 𝐼 ↔ (𝐴𝐺𝐵) ∈ 𝐼)) |
15 | 12, 14 | rspc2v 3622 | . 2 ⊢ ((𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼) → (∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 → (𝐴𝐺𝐵) ∈ 𝐼)) |
16 | 10, 15 | mpan9 505 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ⊆ wss 3949 ran crn 5683 ‘cfv 6553 (class class class)co 7426 1st c1st 7997 2nd c2nd 7998 GIdcgi 30320 RingOpscrngo 37400 Idlcidl 37513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6505 df-fun 6555 df-fv 6561 df-ov 7429 df-idl 37516 |
This theorem is referenced by: idlsubcl 37529 intidl 37535 unichnidl 37537 |
Copyright terms: Public domain | W3C validator |