| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | idlval.1 | . . . 4
⊢ 𝐺 = (1st ‘𝑅) | 
| 2 |  | idlval.2 | . . . 4
⊢ 𝐻 = (2nd ‘𝑅) | 
| 3 |  | idlval.3 | . . . 4
⊢ 𝑋 = ran 𝐺 | 
| 4 |  | idlval.4 | . . . 4
⊢ 𝑍 = (GId‘𝐺) | 
| 5 | 1, 2, 3, 4 | idlval 38020 | . . 3
⊢ (𝑅 ∈ RingOps →
(Idl‘𝑅) = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍 ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))}) | 
| 6 | 5 | eleq2d 2827 | . 2
⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ 𝐼 ∈ {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍 ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})) | 
| 7 | 1 | fvexi 6920 | . . . . . . 7
⊢ 𝐺 ∈ V | 
| 8 | 7 | rnex 7932 | . . . . . 6
⊢ ran 𝐺 ∈ V | 
| 9 | 3, 8 | eqeltri 2837 | . . . . 5
⊢ 𝑋 ∈ V | 
| 10 | 9 | elpw2 5334 | . . . 4
⊢ (𝐼 ∈ 𝒫 𝑋 ↔ 𝐼 ⊆ 𝑋) | 
| 11 | 10 | anbi1i 624 | . . 3
⊢ ((𝐼 ∈ 𝒫 𝑋 ∧ (𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))) ↔ (𝐼 ⊆ 𝑋 ∧ (𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) | 
| 12 |  | eleq2 2830 | . . . . 5
⊢ (𝑖 = 𝐼 → (𝑍 ∈ 𝑖 ↔ 𝑍 ∈ 𝐼)) | 
| 13 |  | eleq2 2830 | . . . . . . . 8
⊢ (𝑖 = 𝐼 → ((𝑥𝐺𝑦) ∈ 𝑖 ↔ (𝑥𝐺𝑦) ∈ 𝐼)) | 
| 14 | 13 | raleqbi1dv 3338 | . . . . . . 7
⊢ (𝑖 = 𝐼 → (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ↔ ∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼)) | 
| 15 |  | eleq2 2830 | . . . . . . . . 9
⊢ (𝑖 = 𝐼 → ((𝑧𝐻𝑥) ∈ 𝑖 ↔ (𝑧𝐻𝑥) ∈ 𝐼)) | 
| 16 |  | eleq2 2830 | . . . . . . . . 9
⊢ (𝑖 = 𝐼 → ((𝑥𝐻𝑧) ∈ 𝑖 ↔ (𝑥𝐻𝑧) ∈ 𝐼)) | 
| 17 | 15, 16 | anbi12d 632 | . . . . . . . 8
⊢ (𝑖 = 𝐼 → (((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖) ↔ ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) | 
| 18 | 17 | ralbidv 3178 | . . . . . . 7
⊢ (𝑖 = 𝐼 → (∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖) ↔ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) | 
| 19 | 14, 18 | anbi12d 632 | . . . . . 6
⊢ (𝑖 = 𝐼 → ((∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)) ↔ (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))) | 
| 20 | 19 | raleqbi1dv 3338 | . . . . 5
⊢ (𝑖 = 𝐼 → (∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)) ↔ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))) | 
| 21 | 12, 20 | anbi12d 632 | . . . 4
⊢ (𝑖 = 𝐼 → ((𝑍 ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖))) ↔ (𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) | 
| 22 | 21 | elrab 3692 | . . 3
⊢ (𝐼 ∈ {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍 ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))} ↔ (𝐼 ∈ 𝒫 𝑋 ∧ (𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) | 
| 23 |  | 3anass 1095 | . . 3
⊢ ((𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ (𝐼 ⊆ 𝑋 ∧ (𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) | 
| 24 | 11, 22, 23 | 3bitr4i 303 | . 2
⊢ (𝐼 ∈ {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍 ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))} ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))) | 
| 25 | 6, 24 | bitrdi 287 | 1
⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) |