Step | Hyp | Ref
| Expression |
1 | | idlval.1 |
. . . 4
⊢ 𝐺 = (1st ‘𝑅) |
2 | | idlval.2 |
. . . 4
⊢ 𝐻 = (2nd ‘𝑅) |
3 | | idlval.3 |
. . . 4
⊢ 𝑋 = ran 𝐺 |
4 | | idlval.4 |
. . . 4
⊢ 𝑍 = (GId‘𝐺) |
5 | 1, 2, 3, 4 | idlval 36098 |
. . 3
⊢ (𝑅 ∈ RingOps →
(Idl‘𝑅) = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍 ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))}) |
6 | 5 | eleq2d 2824 |
. 2
⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ 𝐼 ∈ {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍 ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))})) |
7 | 1 | fvexi 6770 |
. . . . . . 7
⊢ 𝐺 ∈ V |
8 | 7 | rnex 7733 |
. . . . . 6
⊢ ran 𝐺 ∈ V |
9 | 3, 8 | eqeltri 2835 |
. . . . 5
⊢ 𝑋 ∈ V |
10 | 9 | elpw2 5264 |
. . . 4
⊢ (𝐼 ∈ 𝒫 𝑋 ↔ 𝐼 ⊆ 𝑋) |
11 | 10 | anbi1i 623 |
. . 3
⊢ ((𝐼 ∈ 𝒫 𝑋 ∧ (𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))) ↔ (𝐼 ⊆ 𝑋 ∧ (𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) |
12 | | eleq2 2827 |
. . . . 5
⊢ (𝑖 = 𝐼 → (𝑍 ∈ 𝑖 ↔ 𝑍 ∈ 𝐼)) |
13 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → ((𝑥𝐺𝑦) ∈ 𝑖 ↔ (𝑥𝐺𝑦) ∈ 𝐼)) |
14 | 13 | raleqbi1dv 3331 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ↔ ∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼)) |
15 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → ((𝑧𝐻𝑥) ∈ 𝑖 ↔ (𝑧𝐻𝑥) ∈ 𝐼)) |
16 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → ((𝑥𝐻𝑧) ∈ 𝑖 ↔ (𝑥𝐻𝑧) ∈ 𝐼)) |
17 | 15, 16 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → (((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖) ↔ ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) |
18 | 17 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → (∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖) ↔ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) |
19 | 14, 18 | anbi12d 630 |
. . . . . 6
⊢ (𝑖 = 𝐼 → ((∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)) ↔ (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))) |
20 | 19 | raleqbi1dv 3331 |
. . . . 5
⊢ (𝑖 = 𝐼 → (∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)) ↔ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))) |
21 | 12, 20 | anbi12d 630 |
. . . 4
⊢ (𝑖 = 𝐼 → ((𝑍 ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖))) ↔ (𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) |
22 | 21 | elrab 3617 |
. . 3
⊢ (𝐼 ∈ {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍 ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))} ↔ (𝐼 ∈ 𝒫 𝑋 ∧ (𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) |
23 | | 3anass 1093 |
. . 3
⊢ ((𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ (𝐼 ⊆ 𝑋 ∧ (𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) |
24 | 11, 22, 23 | 3bitr4i 302 |
. 2
⊢ (𝐼 ∈ {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍 ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))} ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))) |
25 | 6, 24 | bitrdi 286 |
1
⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) |