MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqexov Structured version   Visualization version   GIF version

Theorem imaeqexov 7591
Description: Substitute an operation value into an existential quantifier over an image. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypothesis
Ref Expression
imaeqexov.1 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
Assertion
Ref Expression
imaeqexov ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑦𝐵𝑧𝐶 𝜓))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem imaeqexov
StepHypRef Expression
1 df-rex 3054 . 2 (∃𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑))
2 ovelimab 7531 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧)))
32anbi1d 631 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)))
4 r19.41v 3159 . . . . . . 7 (∃𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
54rexbii 3076 . . . . . 6 (∃𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
6 r19.41v 3159 . . . . . 6 (∃𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
75, 6bitr2i 276 . . . . 5 ((∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
83, 7bitrdi 287 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)))
98exbidv 1921 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)))
10 rexcom4 3256 . . . 4 (∃𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
11 rexcom4 3256 . . . . . 6 (∃𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
12 ovex 7386 . . . . . . . 8 (𝑦𝐹𝑧) ∈ V
13 imaeqexov.1 . . . . . . . 8 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
1412, 13ceqsexv 3489 . . . . . . 7 (∃𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ 𝜓)
1514rexbii 3076 . . . . . 6 (∃𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑧𝐶 𝜓)
1611, 15bitr3i 277 . . . . 5 (∃𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑧𝐶 𝜓)
1716rexbii 3076 . . . 4 (∃𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 𝜓)
1810, 17bitr3i 277 . . 3 (∃𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 𝜓)
199, 18bitrdi 287 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 𝜓))
201, 19bitrid 283 1 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑦𝐵𝑧𝐶 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  wss 3905   × cxp 5621  cima 5626   Fn wfn 6481  (class class class)co 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-ov 7356
This theorem is referenced by:  naddunif  8618
  Copyright terms: Public domain W3C validator