MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqexov Structured version   Visualization version   GIF version

Theorem imaeqexov 7638
Description: Substitute an operation value into an existential quantifier over an image. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypothesis
Ref Expression
imaeqexov.1 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
Assertion
Ref Expression
imaeqexov ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑦𝐵𝑧𝐶 𝜓))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem imaeqexov
StepHypRef Expression
1 df-rex 3063 . 2 (∃𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑))
2 ovelimab 7578 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧)))
32anbi1d 629 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)))
4 r19.41v 3180 . . . . . . 7 (∃𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
54rexbii 3086 . . . . . 6 (∃𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
6 r19.41v 3180 . . . . . 6 (∃𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
75, 6bitr2i 276 . . . . 5 ((∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
83, 7bitrdi 287 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)))
98exbidv 1916 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)))
10 rexcom4 3277 . . . 4 (∃𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
11 rexcom4 3277 . . . . . 6 (∃𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
12 ovex 7434 . . . . . . . 8 (𝑦𝐹𝑧) ∈ V
13 imaeqexov.1 . . . . . . . 8 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
1412, 13ceqsexv 3518 . . . . . . 7 (∃𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ 𝜓)
1514rexbii 3086 . . . . . 6 (∃𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑧𝐶 𝜓)
1611, 15bitr3i 277 . . . . 5 (∃𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑧𝐶 𝜓)
1716rexbii 3086 . . . 4 (∃𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 𝜓)
1810, 17bitr3i 277 . . 3 (∃𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 𝜓)
199, 18bitrdi 287 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 𝜓))
201, 19bitrid 283 1 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑦𝐵𝑧𝐶 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  wrex 3062  wss 3940   × cxp 5664  cima 5669   Fn wfn 6528  (class class class)co 7401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-fv 6541  df-ov 7404
This theorem is referenced by:  naddunif  8687
  Copyright terms: Public domain W3C validator