MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqexov Structured version   Visualization version   GIF version

Theorem imaeqexov 7579
Description: Substitute an operation value into an existential quantifier over an image. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypothesis
Ref Expression
imaeqexov.1 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
Assertion
Ref Expression
imaeqexov ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑦𝐵𝑧𝐶 𝜓))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem imaeqexov
StepHypRef Expression
1 df-rex 3057 . 2 (∃𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑))
2 ovelimab 7519 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧)))
32anbi1d 631 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)))
4 r19.41v 3162 . . . . . . 7 (∃𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
54rexbii 3079 . . . . . 6 (∃𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
6 r19.41v 3162 . . . . . 6 (∃𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
75, 6bitr2i 276 . . . . 5 ((∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
83, 7bitrdi 287 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)))
98exbidv 1922 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)))
10 rexcom4 3259 . . . 4 (∃𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
11 rexcom4 3259 . . . . . 6 (∃𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
12 ovex 7374 . . . . . . . 8 (𝑦𝐹𝑧) ∈ V
13 imaeqexov.1 . . . . . . . 8 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
1412, 13ceqsexv 3486 . . . . . . 7 (∃𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ 𝜓)
1514rexbii 3079 . . . . . 6 (∃𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑧𝐶 𝜓)
1611, 15bitr3i 277 . . . . 5 (∃𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑧𝐶 𝜓)
1716rexbii 3079 . . . 4 (∃𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 𝜓)
1810, 17bitr3i 277 . . 3 (∃𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 𝜓)
199, 18bitrdi 287 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 𝜓))
201, 19bitrid 283 1 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑦𝐵𝑧𝐶 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wrex 3056  wss 3897   × cxp 5609  cima 5614   Fn wfn 6471  (class class class)co 7341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-fv 6484  df-ov 7344
This theorem is referenced by:  naddunif  8603
  Copyright terms: Public domain W3C validator