MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqexov Structured version   Visualization version   GIF version

Theorem imaeqexov 7641
Description: Substitute an operation value into an existential quantifier over an image. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypothesis
Ref Expression
imaeqexov.1 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
Assertion
Ref Expression
imaeqexov ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑦𝐵𝑧𝐶 𝜓))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem imaeqexov
StepHypRef Expression
1 df-rex 3071 . 2 (∃𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑))
2 ovelimab 7581 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧)))
32anbi1d 630 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)))
4 r19.41v 3188 . . . . . . 7 (∃𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
54rexbii 3094 . . . . . 6 (∃𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
6 r19.41v 3188 . . . . . 6 (∃𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
75, 6bitr2i 275 . . . . 5 ((∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
83, 7bitrdi 286 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)))
98exbidv 1924 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)))
10 rexcom4 3285 . . . 4 (∃𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
11 rexcom4 3285 . . . . . 6 (∃𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))
12 ovex 7438 . . . . . . . 8 (𝑦𝐹𝑧) ∈ V
13 imaeqexov.1 . . . . . . . 8 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
1412, 13ceqsexv 3525 . . . . . . 7 (∃𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ 𝜓)
1514rexbii 3094 . . . . . 6 (∃𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑧𝐶 𝜓)
1611, 15bitr3i 276 . . . . 5 (∃𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑧𝐶 𝜓)
1716rexbii 3094 . . . 4 (∃𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 𝜓)
1810, 17bitr3i 276 . . 3 (∃𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 𝜓)
199, 18bitrdi 286 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑦𝐵𝑧𝐶 𝜓))
201, 19bitrid 282 1 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑦𝐵𝑧𝐶 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wrex 3070  wss 3947   × cxp 5673  cima 5678   Fn wfn 6535  (class class class)co 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-fv 6548  df-ov 7408
This theorem is referenced by:  naddunif  8688
  Copyright terms: Public domain W3C validator