Step | Hyp | Ref
| Expression |
1 | | df-rex 3071 |
. 2
⊢
(∃𝑥 ∈
(𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑)) |
2 | | ovelimab 7581 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦𝐹𝑧))) |
3 | 2 | anbi1d 630 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))) |
4 | | r19.41v 3188 |
. . . . . . 7
⊢
(∃𝑧 ∈
𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ (∃𝑧 ∈ 𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)) |
5 | 4 | rexbii 3094 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐵 ∃𝑧 ∈ 𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 (∃𝑧 ∈ 𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)) |
6 | | r19.41v 3188 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐵 (∃𝑧 ∈ 𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)) |
7 | 5, 6 | bitr2i 275 |
. . . . 5
⊢
((∃𝑦 ∈
𝐵 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)) |
8 | 3, 7 | bitrdi 286 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))) |
9 | 8 | exbidv 1924 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑥∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑))) |
10 | | rexcom4 3285 |
. . . 4
⊢
(∃𝑦 ∈
𝐵 ∃𝑥∃𝑧 ∈ 𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑥∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)) |
11 | | rexcom4 3285 |
. . . . . 6
⊢
(∃𝑧 ∈
𝐶 ∃𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑥∃𝑧 ∈ 𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑)) |
12 | | ovex 7438 |
. . . . . . . 8
⊢ (𝑦𝐹𝑧) ∈ V |
13 | | imaeqexov.1 |
. . . . . . . 8
⊢ (𝑥 = (𝑦𝐹𝑧) → (𝜑 ↔ 𝜓)) |
14 | 12, 13 | ceqsexv 3525 |
. . . . . . 7
⊢
(∃𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ 𝜓) |
15 | 14 | rexbii 3094 |
. . . . . 6
⊢
(∃𝑧 ∈
𝐶 ∃𝑥(𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑧 ∈ 𝐶 𝜓) |
16 | 11, 15 | bitr3i 276 |
. . . . 5
⊢
(∃𝑥∃𝑧 ∈ 𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑧 ∈ 𝐶 𝜓) |
17 | 16 | rexbii 3094 |
. . . 4
⊢
(∃𝑦 ∈
𝐵 ∃𝑥∃𝑧 ∈ 𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜓) |
18 | 10, 17 | bitr3i 276 |
. . 3
⊢
(∃𝑥∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝑥 = (𝑦𝐹𝑧) ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜓) |
19 | 9, 18 | bitrdi 286 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜓)) |
20 | 1, 19 | bitrid 282 |
1
⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜓)) |