| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1137 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃 ∈ 𝑋) → 𝐷 ∈ (PsMet‘𝑋)) |
| 2 | | simp3 1139 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃 ∈ 𝑋) → 𝑃 ∈ 𝑋) |
| 3 | | simpr 484 |
. . . . 5
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃 ∈ 𝑋) ∧ 𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑟)))) ∧ 𝑤 ⊆ 𝑉) → 𝑤 ⊆ 𝑉) |
| 4 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑟))) = (𝑟 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑟))) |
| 5 | 4 | elrnmpt 5969 |
. . . . . . . 8
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑟))) ↔ ∃𝑟 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑟)))) |
| 6 | 5 | elv 3485 |
. . . . . . 7
⊢ (𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑟))) ↔ ∃𝑟 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑟))) |
| 7 | 6 | biimpi 216 |
. . . . . 6
⊢ (𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑟))) → ∃𝑟 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑟))) |
| 8 | 7 | ad2antlr 727 |
. . . . 5
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃 ∈ 𝑋) ∧ 𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑟)))) ∧ 𝑤 ⊆ 𝑉) → ∃𝑟 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑟))) |
| 9 | | sseq1 4009 |
. . . . . . 7
⊢ (𝑤 = (◡𝐷 “ (0[,)𝑟)) → (𝑤 ⊆ 𝑉 ↔ (◡𝐷 “ (0[,)𝑟)) ⊆ 𝑉)) |
| 10 | 9 | biimpcd 249 |
. . . . . 6
⊢ (𝑤 ⊆ 𝑉 → (𝑤 = (◡𝐷 “ (0[,)𝑟)) → (◡𝐷 “ (0[,)𝑟)) ⊆ 𝑉)) |
| 11 | 10 | reximdv 3170 |
. . . . 5
⊢ (𝑤 ⊆ 𝑉 → (∃𝑟 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑟)) → ∃𝑟 ∈ ℝ+ (◡𝐷 “ (0[,)𝑟)) ⊆ 𝑉)) |
| 12 | 3, 8, 11 | sylc 65 |
. . . 4
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃 ∈ 𝑋) ∧ 𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑟)))) ∧ 𝑤 ⊆ 𝑉) → ∃𝑟 ∈ ℝ+ (◡𝐷 “ (0[,)𝑟)) ⊆ 𝑉) |
| 13 | 2 | ne0d 4342 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃 ∈ 𝑋) → 𝑋 ≠ ∅) |
| 14 | | simp2 1138 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃 ∈ 𝑋) → 𝑉 ∈ (metUnif‘𝐷)) |
| 15 | | metuel 24577 |
. . . . . 6
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑟)))𝑤 ⊆ 𝑉))) |
| 16 | 15 | simplbda 499 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑉 ∈ (metUnif‘𝐷)) → ∃𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑟)))𝑤 ⊆ 𝑉) |
| 17 | 13, 1, 14, 16 | syl21anc 838 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃 ∈ 𝑋) → ∃𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑟)))𝑤 ⊆ 𝑉) |
| 18 | 12, 17 | r19.29a 3162 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃 ∈ 𝑋) → ∃𝑟 ∈ ℝ+ (◡𝐷 “ (0[,)𝑟)) ⊆ 𝑉) |
| 19 | | imass1 6119 |
. . . . . 6
⊢ ((◡𝐷 “ (0[,)𝑟)) ⊆ 𝑉 → ((◡𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃})) |
| 20 | 19 | reximi 3084 |
. . . . 5
⊢
(∃𝑟 ∈
ℝ+ (◡𝐷 “ (0[,)𝑟)) ⊆ 𝑉 → ∃𝑟 ∈ ℝ+ ((◡𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃})) |
| 21 | | blval2 24575 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑟) = ((◡𝐷 “ (0[,)𝑟)) “ {𝑃})) |
| 22 | 21 | sseq1d 4015 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}) ↔ ((◡𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃}))) |
| 23 | 22 | 3expa 1119 |
. . . . . 6
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}) ↔ ((◡𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃}))) |
| 24 | 23 | rexbidva 3177 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}) ↔ ∃𝑟 ∈ ℝ+ ((◡𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃}))) |
| 25 | 20, 24 | imbitrrid 246 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑟 ∈ ℝ+ (◡𝐷 “ (0[,)𝑟)) ⊆ 𝑉 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}))) |
| 26 | 25 | imp 406 |
. . 3
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ ∃𝑟 ∈ ℝ+ (◡𝐷 “ (0[,)𝑟)) ⊆ 𝑉) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃})) |
| 27 | 1, 2, 18, 26 | syl21anc 838 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃 ∈ 𝑋) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃})) |
| 28 | | blssexps 24436 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑎 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑎 ∧ 𝑎 ⊆ (𝑉 “ {𝑃})) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}))) |
| 29 | 28 | 3adant2 1132 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃 ∈ 𝑋) → (∃𝑎 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑎 ∧ 𝑎 ⊆ (𝑉 “ {𝑃})) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}))) |
| 30 | 27, 29 | mpbird 257 |
1
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃 ∈ 𝑋) → ∃𝑎 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑎 ∧ 𝑎 ⊆ (𝑉 “ {𝑃}))) |