MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustbl Structured version   Visualization version   GIF version

Theorem metustbl 24454
Description: The "section" image of an entourage at a point 𝑃 always contains a ball (centered on this point). (Contributed by Thierry Arnoux, 8-Dec-2017.)
Assertion
Ref Expression
metustbl ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑎 ∈ ran (ball‘𝐷)(𝑃𝑎𝑎 ⊆ (𝑉 “ {𝑃})))
Distinct variable groups:   𝐷,𝑎   𝑃,𝑎   𝑉,𝑎   𝑋,𝑎

Proof of Theorem metustbl
Dummy variables 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → 𝐷 ∈ (PsMet‘𝑋))
2 simp3 1138 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → 𝑃𝑋)
3 simpr 484 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) ∧ 𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))) ∧ 𝑤𝑉) → 𝑤𝑉)
4 eqid 2729 . . . . . . . . 9 (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟))) = (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))
54elrnmpt 5922 . . . . . . . 8 (𝑤 ∈ V → (𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟))) ↔ ∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟))))
65elv 3452 . . . . . . 7 (𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟))) ↔ ∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟)))
76biimpi 216 . . . . . 6 (𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟))) → ∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟)))
87ad2antlr 727 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) ∧ 𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))) ∧ 𝑤𝑉) → ∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟)))
9 sseq1 3972 . . . . . . 7 (𝑤 = (𝐷 “ (0[,)𝑟)) → (𝑤𝑉 ↔ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉))
109biimpcd 249 . . . . . 6 (𝑤𝑉 → (𝑤 = (𝐷 “ (0[,)𝑟)) → (𝐷 “ (0[,)𝑟)) ⊆ 𝑉))
1110reximdv 3148 . . . . 5 (𝑤𝑉 → (∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟)) → ∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉))
123, 8, 11sylc 65 . . . 4 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) ∧ 𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))) ∧ 𝑤𝑉) → ∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉)
132ne0d 4305 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → 𝑋 ≠ ∅)
14 simp2 1137 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → 𝑉 ∈ (metUnif‘𝐷))
15 metuel 24452 . . . . . 6 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))𝑤𝑉)))
1615simplbda 499 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑉 ∈ (metUnif‘𝐷)) → ∃𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))𝑤𝑉)
1713, 1, 14, 16syl21anc 837 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))𝑤𝑉)
1812, 17r19.29a 3141 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉)
19 imass1 6072 . . . . . 6 ((𝐷 “ (0[,)𝑟)) ⊆ 𝑉 → ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃}))
2019reximi 3067 . . . . 5 (∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉 → ∃𝑟 ∈ ℝ+ ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃}))
21 blval2 24450 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑟) = ((𝐷 “ (0[,)𝑟)) “ {𝑃}))
2221sseq1d 3978 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}) ↔ ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃})))
23223expa 1118 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ 𝑟 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}) ↔ ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃})))
2423rexbidva 3155 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}) ↔ ∃𝑟 ∈ ℝ+ ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃})))
2520, 24imbitrrid 246 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃})))
2625imp 406 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ ∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}))
271, 2, 18, 26syl21anc 837 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}))
28 blssexps 24314 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑎 ∈ ran (ball‘𝐷)(𝑃𝑎𝑎 ⊆ (𝑉 “ {𝑃})) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃})))
29283adant2 1131 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → (∃𝑎 ∈ ran (ball‘𝐷)(𝑃𝑎𝑎 ⊆ (𝑉 “ {𝑃})) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃})))
3027, 29mpbird 257 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑎 ∈ ran (ball‘𝐷)(𝑃𝑎𝑎 ⊆ (𝑉 “ {𝑃})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3447  wss 3914  c0 4296  {csn 4589  cmpt 5188   × cxp 5636  ccnv 5637  ran crn 5639  cima 5641  cfv 6511  (class class class)co 7387  0cc0 11068  +crp 12951  [,)cico 13308  PsMetcpsmet 21248  ballcbl 21251  metUnifcmetu 21255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ico 13312  df-psmet 21256  df-bl 21259  df-fbas 21261  df-fg 21262  df-metu 21263
This theorem is referenced by:  psmetutop  24455
  Copyright terms: Public domain W3C validator