MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdres Structured version   Visualization version   GIF version

Theorem dprdres 19950
Description: Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdres.1 (𝜑𝐺dom DProd 𝑆)
dprdres.2 (𝜑 → dom 𝑆 = 𝐼)
dprdres.3 (𝜑𝐴𝐼)
Assertion
Ref Expression
dprdres (𝜑 → (𝐺dom DProd (𝑆𝐴) ∧ (𝐺 DProd (𝑆𝐴)) ⊆ (𝐺 DProd 𝑆)))

Proof of Theorem dprdres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdres.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
2 dprdgrp 19927 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
31, 2syl 17 . . 3 (𝜑𝐺 ∈ Grp)
4 dprdres.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
51, 4dprdf2 19929 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
6 dprdres.3 . . . 4 (𝜑𝐴𝐼)
75, 6fssresd 6698 . . 3 (𝜑 → (𝑆𝐴):𝐴⟶(SubGrp‘𝐺))
81ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝐺dom DProd 𝑆)
94ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → dom 𝑆 = 𝐼)
106ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝐴𝐼)
11 simplr 768 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑥𝐴)
1210, 11sseldd 3931 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑥𝐼)
13 eldifi 4080 . . . . . . . . . 10 (𝑦 ∈ (𝐴 ∖ {𝑥}) → 𝑦𝐴)
1413adantl 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑦𝐴)
1510, 14sseldd 3931 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑦𝐼)
16 eldifsni 4743 . . . . . . . . . 10 (𝑦 ∈ (𝐴 ∖ {𝑥}) → 𝑦𝑥)
1716adantl 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑦𝑥)
1817necomd 2984 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑥𝑦)
19 eqid 2733 . . . . . . . 8 (Cntz‘𝐺) = (Cntz‘𝐺)
208, 9, 12, 15, 18, 19dprdcntz 19930 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
2111fvresd 6851 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → ((𝑆𝐴)‘𝑥) = (𝑆𝑥))
2214fvresd 6851 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → ((𝑆𝐴)‘𝑦) = (𝑆𝑦))
2322fveq2d 6835 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) = ((Cntz‘𝐺)‘(𝑆𝑦)))
2420, 21, 233sstr4d 3986 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → ((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)))
2524ralrimiva 3125 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)))
26 fvres 6850 . . . . . . . 8 (𝑥𝐴 → ((𝑆𝐴)‘𝑥) = (𝑆𝑥))
2726adantl 481 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑆𝐴)‘𝑥) = (𝑆𝑥))
2827ineq1d 4168 . . . . . 6 ((𝜑𝑥𝐴) → (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))))
29 eqid 2733 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
3029subgacs 19081 . . . . . . . . . . . 12 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
31 acsmre 17566 . . . . . . . . . . . 12 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
323, 30, 313syl 18 . . . . . . . . . . 11 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
3332adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
34 eqid 2733 . . . . . . . . . 10 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
35 resss 5957 . . . . . . . . . . . . 13 (𝑆𝐴) ⊆ 𝑆
36 imass1 6057 . . . . . . . . . . . . 13 ((𝑆𝐴) ⊆ 𝑆 → ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐴 ∖ {𝑥})))
3735, 36ax-mp 5 . . . . . . . . . . . 12 ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐴 ∖ {𝑥}))
386adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐴𝐼)
39 ssdif 4093 . . . . . . . . . . . . 13 (𝐴𝐼 → (𝐴 ∖ {𝑥}) ⊆ (𝐼 ∖ {𝑥}))
40 imass2 6058 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑥}) ⊆ (𝐼 ∖ {𝑥}) → (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐼 ∖ {𝑥})))
4138, 39, 403syl 18 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐼 ∖ {𝑥})))
4237, 41sstrid 3942 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐼 ∖ {𝑥})))
4342unissd 4870 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐼 ∖ {𝑥})))
44 imassrn 6027 . . . . . . . . . . . 12 (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆
455frnd 6667 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
4629subgss 19048 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥 ⊆ (Base‘𝐺))
47 velpw 4556 . . . . . . . . . . . . . . . 16 (𝑥 ∈ 𝒫 (Base‘𝐺) ↔ 𝑥 ⊆ (Base‘𝐺))
4846, 47sylibr 234 . . . . . . . . . . . . . . 15 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥 ∈ 𝒫 (Base‘𝐺))
4948ssriv 3934 . . . . . . . . . . . . . 14 (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)
5045, 49sstrdi 3943 . . . . . . . . . . . . 13 (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
5150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
5244, 51sstrid 3942 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
53 sspwuni 5052 . . . . . . . . . . 11 ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
5452, 53sylib 218 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
5533, 34, 43, 54mrcssd 17538 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
56 sslin 4192 . . . . . . . . 9 (((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) ⊆ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
5755, 56syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) ⊆ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
581adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐺dom DProd 𝑆)
594adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → dom 𝑆 = 𝐼)
606sselda 3930 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐼)
61 eqid 2733 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
6258, 59, 60, 61, 34dprddisj 19931 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)})
6357, 62sseqtrd 3967 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) ⊆ {(0g𝐺)})
645ffvelcdmda 7026 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
6560, 64syldan 591 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
6661subg0cl 19055 . . . . . . . . . 10 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑆𝑥))
6765, 66syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (𝑆𝑥))
6843, 54sstrd 3941 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (Base‘𝐺))
6934mrccl 17525 . . . . . . . . . . 11 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
7033, 68, 69syl2anc 584 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
7161subg0cl 19055 . . . . . . . . . 10 (((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))))
7270, 71syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0g𝐺) ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))))
7367, 72elind 4149 . . . . . . . 8 ((𝜑𝑥𝐴) → (0g𝐺) ∈ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))))
7473snssd 4762 . . . . . . 7 ((𝜑𝑥𝐴) → {(0g𝐺)} ⊆ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))))
7563, 74eqssd 3948 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)})
7628, 75eqtrd 2768 . . . . 5 ((𝜑𝑥𝐴) → (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)})
7725, 76jca 511 . . . 4 ((𝜑𝑥𝐴) → (∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) ∧ (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)}))
7877ralrimiva 3125 . . 3 (𝜑 → ∀𝑥𝐴 (∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) ∧ (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)}))
791, 4dprddomcld 19923 . . . . 5 (𝜑𝐼 ∈ V)
8079, 6ssexd 5266 . . . 4 (𝜑𝐴 ∈ V)
817fdmd 6669 . . . 4 (𝜑 → dom (𝑆𝐴) = 𝐴)
8219, 61, 34dmdprd 19920 . . . 4 ((𝐴 ∈ V ∧ dom (𝑆𝐴) = 𝐴) → (𝐺dom DProd (𝑆𝐴) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐴):𝐴⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐴 (∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) ∧ (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)}))))
8380, 81, 82syl2anc 584 . . 3 (𝜑 → (𝐺dom DProd (𝑆𝐴) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐴):𝐴⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐴 (∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) ∧ (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)}))))
843, 7, 78, 83mpbir3and 1343 . 2 (𝜑𝐺dom DProd (𝑆𝐴))
85 rnss 5885 . . . . . 6 ((𝑆𝐴) ⊆ 𝑆 → ran (𝑆𝐴) ⊆ ran 𝑆)
86 uniss 4868 . . . . . 6 (ran (𝑆𝐴) ⊆ ran 𝑆 ran (𝑆𝐴) ⊆ ran 𝑆)
8735, 85, 86mp2b 10 . . . . 5 ran (𝑆𝐴) ⊆ ran 𝑆
8887a1i 11 . . . 4 (𝜑 ran (𝑆𝐴) ⊆ ran 𝑆)
89 sspwuni 5052 . . . . 5 (ran 𝑆 ⊆ 𝒫 (Base‘𝐺) ↔ ran 𝑆 ⊆ (Base‘𝐺))
9050, 89sylib 218 . . . 4 (𝜑 ran 𝑆 ⊆ (Base‘𝐺))
9132, 34, 88, 90mrcssd 17538 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐴)) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
9234dprdspan 19949 . . . 4 (𝐺dom DProd (𝑆𝐴) → (𝐺 DProd (𝑆𝐴)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐴)))
9384, 92syl 17 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐴)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐴)))
9434dprdspan 19949 . . . 4 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
951, 94syl 17 . . 3 (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
9691, 93, 953sstr4d 3986 . 2 (𝜑 → (𝐺 DProd (𝑆𝐴)) ⊆ (𝐺 DProd 𝑆))
9784, 96jca 511 1 (𝜑 → (𝐺dom DProd (𝑆𝐴) ∧ (𝐺 DProd (𝑆𝐴)) ⊆ (𝐺 DProd 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  Vcvv 3437  cdif 3895  cin 3897  wss 3898  𝒫 cpw 4551  {csn 4577   cuni 4860   class class class wbr 5095  dom cdm 5621  ran crn 5622  cres 5623  cima 5624  wf 6485  cfv 6489  (class class class)co 7355  Basecbs 17127  0gc0g 17350  Moorecmre 17492  mrClscmrc 17493  ACScacs 17495  Grpcgrp 18854  SubGrpcsubg 19041  Cntzccntz 19235   DProd cdprd 19915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-gsum 17353  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-ghm 19133  df-gim 19179  df-cntz 19237  df-oppg 19266  df-cmn 19702  df-dprd 19917
This theorem is referenced by:  dprdf1  19955  dprdcntz2  19960  dprddisj2  19961  dprd2dlem1  19963  dprd2da  19964  dmdprdsplit  19969  dprdsplit  19970  dpjf  19979  dpjidcl  19980  dpjlid  19983  dpjghm  19985  ablfac1eulem  19994  ablfac1eu  19995
  Copyright terms: Public domain W3C validator