MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdres Structured version   Visualization version   GIF version

Theorem dprdres 20009
Description: Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdres.1 (𝜑𝐺dom DProd 𝑆)
dprdres.2 (𝜑 → dom 𝑆 = 𝐼)
dprdres.3 (𝜑𝐴𝐼)
Assertion
Ref Expression
dprdres (𝜑 → (𝐺dom DProd (𝑆𝐴) ∧ (𝐺 DProd (𝑆𝐴)) ⊆ (𝐺 DProd 𝑆)))

Proof of Theorem dprdres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdres.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
2 dprdgrp 19986 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
31, 2syl 17 . . 3 (𝜑𝐺 ∈ Grp)
4 dprdres.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
51, 4dprdf2 19988 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
6 dprdres.3 . . . 4 (𝜑𝐴𝐼)
75, 6fssresd 6744 . . 3 (𝜑 → (𝑆𝐴):𝐴⟶(SubGrp‘𝐺))
81ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝐺dom DProd 𝑆)
94ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → dom 𝑆 = 𝐼)
106ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝐴𝐼)
11 simplr 768 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑥𝐴)
1210, 11sseldd 3959 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑥𝐼)
13 eldifi 4106 . . . . . . . . . 10 (𝑦 ∈ (𝐴 ∖ {𝑥}) → 𝑦𝐴)
1413adantl 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑦𝐴)
1510, 14sseldd 3959 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑦𝐼)
16 eldifsni 4766 . . . . . . . . . 10 (𝑦 ∈ (𝐴 ∖ {𝑥}) → 𝑦𝑥)
1716adantl 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑦𝑥)
1817necomd 2987 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑥𝑦)
19 eqid 2735 . . . . . . . 8 (Cntz‘𝐺) = (Cntz‘𝐺)
208, 9, 12, 15, 18, 19dprdcntz 19989 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
2111fvresd 6895 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → ((𝑆𝐴)‘𝑥) = (𝑆𝑥))
2214fvresd 6895 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → ((𝑆𝐴)‘𝑦) = (𝑆𝑦))
2322fveq2d 6879 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) = ((Cntz‘𝐺)‘(𝑆𝑦)))
2420, 21, 233sstr4d 4014 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → ((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)))
2524ralrimiva 3132 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)))
26 fvres 6894 . . . . . . . 8 (𝑥𝐴 → ((𝑆𝐴)‘𝑥) = (𝑆𝑥))
2726adantl 481 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑆𝐴)‘𝑥) = (𝑆𝑥))
2827ineq1d 4194 . . . . . 6 ((𝜑𝑥𝐴) → (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))))
29 eqid 2735 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
3029subgacs 19142 . . . . . . . . . . . 12 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
31 acsmre 17662 . . . . . . . . . . . 12 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
323, 30, 313syl 18 . . . . . . . . . . 11 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
3332adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
34 eqid 2735 . . . . . . . . . 10 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
35 resss 5988 . . . . . . . . . . . . 13 (𝑆𝐴) ⊆ 𝑆
36 imass1 6088 . . . . . . . . . . . . 13 ((𝑆𝐴) ⊆ 𝑆 → ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐴 ∖ {𝑥})))
3735, 36ax-mp 5 . . . . . . . . . . . 12 ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐴 ∖ {𝑥}))
386adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐴𝐼)
39 ssdif 4119 . . . . . . . . . . . . 13 (𝐴𝐼 → (𝐴 ∖ {𝑥}) ⊆ (𝐼 ∖ {𝑥}))
40 imass2 6089 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑥}) ⊆ (𝐼 ∖ {𝑥}) → (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐼 ∖ {𝑥})))
4138, 39, 403syl 18 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐼 ∖ {𝑥})))
4237, 41sstrid 3970 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐼 ∖ {𝑥})))
4342unissd 4893 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐼 ∖ {𝑥})))
44 imassrn 6058 . . . . . . . . . . . 12 (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆
455frnd 6713 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
4629subgss 19108 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥 ⊆ (Base‘𝐺))
47 velpw 4580 . . . . . . . . . . . . . . . 16 (𝑥 ∈ 𝒫 (Base‘𝐺) ↔ 𝑥 ⊆ (Base‘𝐺))
4846, 47sylibr 234 . . . . . . . . . . . . . . 15 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥 ∈ 𝒫 (Base‘𝐺))
4948ssriv 3962 . . . . . . . . . . . . . 14 (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)
5045, 49sstrdi 3971 . . . . . . . . . . . . 13 (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
5150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
5244, 51sstrid 3970 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
53 sspwuni 5076 . . . . . . . . . . 11 ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
5452, 53sylib 218 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
5533, 34, 43, 54mrcssd 17634 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
56 sslin 4218 . . . . . . . . 9 (((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) ⊆ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
5755, 56syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) ⊆ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
581adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐺dom DProd 𝑆)
594adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → dom 𝑆 = 𝐼)
606sselda 3958 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐼)
61 eqid 2735 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
6258, 59, 60, 61, 34dprddisj 19990 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)})
6357, 62sseqtrd 3995 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) ⊆ {(0g𝐺)})
645ffvelcdmda 7073 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
6560, 64syldan 591 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
6661subg0cl 19115 . . . . . . . . . 10 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑆𝑥))
6765, 66syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (𝑆𝑥))
6843, 54sstrd 3969 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (Base‘𝐺))
6934mrccl 17621 . . . . . . . . . . 11 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
7033, 68, 69syl2anc 584 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
7161subg0cl 19115 . . . . . . . . . 10 (((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))))
7270, 71syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0g𝐺) ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))))
7367, 72elind 4175 . . . . . . . 8 ((𝜑𝑥𝐴) → (0g𝐺) ∈ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))))
7473snssd 4785 . . . . . . 7 ((𝜑𝑥𝐴) → {(0g𝐺)} ⊆ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))))
7563, 74eqssd 3976 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)})
7628, 75eqtrd 2770 . . . . 5 ((𝜑𝑥𝐴) → (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)})
7725, 76jca 511 . . . 4 ((𝜑𝑥𝐴) → (∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) ∧ (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)}))
7877ralrimiva 3132 . . 3 (𝜑 → ∀𝑥𝐴 (∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) ∧ (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)}))
791, 4dprddomcld 19982 . . . . 5 (𝜑𝐼 ∈ V)
8079, 6ssexd 5294 . . . 4 (𝜑𝐴 ∈ V)
817fdmd 6715 . . . 4 (𝜑 → dom (𝑆𝐴) = 𝐴)
8219, 61, 34dmdprd 19979 . . . 4 ((𝐴 ∈ V ∧ dom (𝑆𝐴) = 𝐴) → (𝐺dom DProd (𝑆𝐴) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐴):𝐴⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐴 (∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) ∧ (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)}))))
8380, 81, 82syl2anc 584 . . 3 (𝜑 → (𝐺dom DProd (𝑆𝐴) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐴):𝐴⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐴 (∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) ∧ (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)}))))
843, 7, 78, 83mpbir3and 1343 . 2 (𝜑𝐺dom DProd (𝑆𝐴))
85 rnss 5919 . . . . . 6 ((𝑆𝐴) ⊆ 𝑆 → ran (𝑆𝐴) ⊆ ran 𝑆)
86 uniss 4891 . . . . . 6 (ran (𝑆𝐴) ⊆ ran 𝑆 ran (𝑆𝐴) ⊆ ran 𝑆)
8735, 85, 86mp2b 10 . . . . 5 ran (𝑆𝐴) ⊆ ran 𝑆
8887a1i 11 . . . 4 (𝜑 ran (𝑆𝐴) ⊆ ran 𝑆)
89 sspwuni 5076 . . . . 5 (ran 𝑆 ⊆ 𝒫 (Base‘𝐺) ↔ ran 𝑆 ⊆ (Base‘𝐺))
9050, 89sylib 218 . . . 4 (𝜑 ran 𝑆 ⊆ (Base‘𝐺))
9132, 34, 88, 90mrcssd 17634 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐴)) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
9234dprdspan 20008 . . . 4 (𝐺dom DProd (𝑆𝐴) → (𝐺 DProd (𝑆𝐴)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐴)))
9384, 92syl 17 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐴)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐴)))
9434dprdspan 20008 . . . 4 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
951, 94syl 17 . . 3 (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
9691, 93, 953sstr4d 4014 . 2 (𝜑 → (𝐺 DProd (𝑆𝐴)) ⊆ (𝐺 DProd 𝑆))
9784, 96jca 511 1 (𝜑 → (𝐺dom DProd (𝑆𝐴) ∧ (𝐺 DProd (𝑆𝐴)) ⊆ (𝐺 DProd 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  cdif 3923  cin 3925  wss 3926  𝒫 cpw 4575  {csn 4601   cuni 4883   class class class wbr 5119  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  wf 6526  cfv 6530  (class class class)co 7403  Basecbs 17226  0gc0g 17451  Moorecmre 17592  mrClscmrc 17593  ACScacs 17595  Grpcgrp 18914  SubGrpcsubg 19101  Cntzccntz 19296   DProd cdprd 19974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-0g 17453  df-gsum 17454  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-gim 19240  df-cntz 19298  df-oppg 19327  df-cmn 19761  df-dprd 19976
This theorem is referenced by:  dprdf1  20014  dprdcntz2  20019  dprddisj2  20020  dprd2dlem1  20022  dprd2da  20023  dmdprdsplit  20028  dprdsplit  20029  dpjf  20038  dpjidcl  20039  dpjlid  20042  dpjghm  20044  ablfac1eulem  20053  ablfac1eu  20054
  Copyright terms: Public domain W3C validator