MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdres Structured version   Visualization version   GIF version

Theorem dprdres 20062
Description: Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdres.1 (𝜑𝐺dom DProd 𝑆)
dprdres.2 (𝜑 → dom 𝑆 = 𝐼)
dprdres.3 (𝜑𝐴𝐼)
Assertion
Ref Expression
dprdres (𝜑 → (𝐺dom DProd (𝑆𝐴) ∧ (𝐺 DProd (𝑆𝐴)) ⊆ (𝐺 DProd 𝑆)))

Proof of Theorem dprdres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdres.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
2 dprdgrp 20039 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
31, 2syl 17 . . 3 (𝜑𝐺 ∈ Grp)
4 dprdres.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
51, 4dprdf2 20041 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
6 dprdres.3 . . . 4 (𝜑𝐴𝐼)
75, 6fssresd 6775 . . 3 (𝜑 → (𝑆𝐴):𝐴⟶(SubGrp‘𝐺))
81ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝐺dom DProd 𝑆)
94ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → dom 𝑆 = 𝐼)
106ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝐴𝐼)
11 simplr 769 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑥𝐴)
1210, 11sseldd 3995 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑥𝐼)
13 eldifi 4140 . . . . . . . . . 10 (𝑦 ∈ (𝐴 ∖ {𝑥}) → 𝑦𝐴)
1413adantl 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑦𝐴)
1510, 14sseldd 3995 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑦𝐼)
16 eldifsni 4794 . . . . . . . . . 10 (𝑦 ∈ (𝐴 ∖ {𝑥}) → 𝑦𝑥)
1716adantl 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑦𝑥)
1817necomd 2993 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → 𝑥𝑦)
19 eqid 2734 . . . . . . . 8 (Cntz‘𝐺) = (Cntz‘𝐺)
208, 9, 12, 15, 18, 19dprdcntz 20042 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
2111fvresd 6926 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → ((𝑆𝐴)‘𝑥) = (𝑆𝑥))
2214fvresd 6926 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → ((𝑆𝐴)‘𝑦) = (𝑆𝑦))
2322fveq2d 6910 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) = ((Cntz‘𝐺)‘(𝑆𝑦)))
2420, 21, 233sstr4d 4042 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑦 ∈ (𝐴 ∖ {𝑥})) → ((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)))
2524ralrimiva 3143 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)))
26 fvres 6925 . . . . . . . 8 (𝑥𝐴 → ((𝑆𝐴)‘𝑥) = (𝑆𝑥))
2726adantl 481 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑆𝐴)‘𝑥) = (𝑆𝑥))
2827ineq1d 4226 . . . . . 6 ((𝜑𝑥𝐴) → (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))))
29 eqid 2734 . . . . . . . . . . . . 13 (Base‘𝐺) = (Base‘𝐺)
3029subgacs 19191 . . . . . . . . . . . 12 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
31 acsmre 17696 . . . . . . . . . . . 12 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
323, 30, 313syl 18 . . . . . . . . . . 11 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
3332adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
34 eqid 2734 . . . . . . . . . 10 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
35 resss 6021 . . . . . . . . . . . . 13 (𝑆𝐴) ⊆ 𝑆
36 imass1 6121 . . . . . . . . . . . . 13 ((𝑆𝐴) ⊆ 𝑆 → ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐴 ∖ {𝑥})))
3735, 36ax-mp 5 . . . . . . . . . . . 12 ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐴 ∖ {𝑥}))
386adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐴𝐼)
39 ssdif 4153 . . . . . . . . . . . . 13 (𝐴𝐼 → (𝐴 ∖ {𝑥}) ⊆ (𝐼 ∖ {𝑥}))
40 imass2 6122 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑥}) ⊆ (𝐼 ∖ {𝑥}) → (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐼 ∖ {𝑥})))
4138, 39, 403syl 18 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐼 ∖ {𝑥})))
4237, 41sstrid 4006 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐼 ∖ {𝑥})))
4342unissd 4921 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (𝑆 “ (𝐼 ∖ {𝑥})))
44 imassrn 6090 . . . . . . . . . . . 12 (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆
455frnd 6744 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
4629subgss 19157 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥 ⊆ (Base‘𝐺))
47 velpw 4609 . . . . . . . . . . . . . . . 16 (𝑥 ∈ 𝒫 (Base‘𝐺) ↔ 𝑥 ⊆ (Base‘𝐺))
4846, 47sylibr 234 . . . . . . . . . . . . . . 15 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥 ∈ 𝒫 (Base‘𝐺))
4948ssriv 3998 . . . . . . . . . . . . . 14 (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)
5045, 49sstrdi 4007 . . . . . . . . . . . . 13 (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
5150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
5244, 51sstrid 4006 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
53 sspwuni 5104 . . . . . . . . . . 11 ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
5452, 53sylib 218 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
5533, 34, 43, 54mrcssd 17668 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
56 sslin 4250 . . . . . . . . 9 (((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) ⊆ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
5755, 56syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) ⊆ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
581adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐺dom DProd 𝑆)
594adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → dom 𝑆 = 𝐼)
606sselda 3994 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐼)
61 eqid 2734 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
6258, 59, 60, 61, 34dprddisj 20043 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)})
6357, 62sseqtrd 4035 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) ⊆ {(0g𝐺)})
645ffvelcdmda 7103 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
6560, 64syldan 591 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
6661subg0cl 19164 . . . . . . . . . 10 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑆𝑥))
6765, 66syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (𝑆𝑥))
6843, 54sstrd 4005 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (Base‘𝐺))
6934mrccl 17655 . . . . . . . . . . 11 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
7033, 68, 69syl2anc 584 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
7161subg0cl 19164 . . . . . . . . . 10 (((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))))
7270, 71syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0g𝐺) ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥}))))
7367, 72elind 4209 . . . . . . . 8 ((𝜑𝑥𝐴) → (0g𝐺) ∈ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))))
7473snssd 4813 . . . . . . 7 ((𝜑𝑥𝐴) → {(0g𝐺)} ⊆ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))))
7563, 74eqssd 4012 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)})
7628, 75eqtrd 2774 . . . . 5 ((𝜑𝑥𝐴) → (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)})
7725, 76jca 511 . . . 4 ((𝜑𝑥𝐴) → (∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) ∧ (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)}))
7877ralrimiva 3143 . . 3 (𝜑 → ∀𝑥𝐴 (∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) ∧ (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)}))
791, 4dprddomcld 20035 . . . . 5 (𝜑𝐼 ∈ V)
8079, 6ssexd 5329 . . . 4 (𝜑𝐴 ∈ V)
817fdmd 6746 . . . 4 (𝜑 → dom (𝑆𝐴) = 𝐴)
8219, 61, 34dmdprd 20032 . . . 4 ((𝐴 ∈ V ∧ dom (𝑆𝐴) = 𝐴) → (𝐺dom DProd (𝑆𝐴) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐴):𝐴⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐴 (∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) ∧ (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)}))))
8380, 81, 82syl2anc 584 . . 3 (𝜑 → (𝐺dom DProd (𝑆𝐴) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐴):𝐴⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐴 (∀𝑦 ∈ (𝐴 ∖ {𝑥})((𝑆𝐴)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐴)‘𝑦)) ∧ (((𝑆𝐴)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐴) “ (𝐴 ∖ {𝑥})))) = {(0g𝐺)}))))
843, 7, 78, 83mpbir3and 1341 . 2 (𝜑𝐺dom DProd (𝑆𝐴))
85 rnss 5952 . . . . . 6 ((𝑆𝐴) ⊆ 𝑆 → ran (𝑆𝐴) ⊆ ran 𝑆)
86 uniss 4919 . . . . . 6 (ran (𝑆𝐴) ⊆ ran 𝑆 ran (𝑆𝐴) ⊆ ran 𝑆)
8735, 85, 86mp2b 10 . . . . 5 ran (𝑆𝐴) ⊆ ran 𝑆
8887a1i 11 . . . 4 (𝜑 ran (𝑆𝐴) ⊆ ran 𝑆)
89 sspwuni 5104 . . . . 5 (ran 𝑆 ⊆ 𝒫 (Base‘𝐺) ↔ ran 𝑆 ⊆ (Base‘𝐺))
9050, 89sylib 218 . . . 4 (𝜑 ran 𝑆 ⊆ (Base‘𝐺))
9132, 34, 88, 90mrcssd 17668 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐴)) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
9234dprdspan 20061 . . . 4 (𝐺dom DProd (𝑆𝐴) → (𝐺 DProd (𝑆𝐴)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐴)))
9384, 92syl 17 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐴)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐴)))
9434dprdspan 20061 . . . 4 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
951, 94syl 17 . . 3 (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
9691, 93, 953sstr4d 4042 . 2 (𝜑 → (𝐺 DProd (𝑆𝐴)) ⊆ (𝐺 DProd 𝑆))
9784, 96jca 511 1 (𝜑 → (𝐺dom DProd (𝑆𝐴) ∧ (𝐺 DProd (𝑆𝐴)) ⊆ (𝐺 DProd 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  Vcvv 3477  cdif 3959  cin 3961  wss 3962  𝒫 cpw 4604  {csn 4630   cuni 4911   class class class wbr 5147  dom cdm 5688  ran crn 5689  cres 5690  cima 5691  wf 6558  cfv 6562  (class class class)co 7430  Basecbs 17244  0gc0g 17485  Moorecmre 17626  mrClscmrc 17627  ACScacs 17629  Grpcgrp 18963  SubGrpcsubg 19150  Cntzccntz 19345   DProd cdprd 20027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-ghm 19243  df-gim 19289  df-cntz 19347  df-oppg 19376  df-cmn 19814  df-dprd 20029
This theorem is referenced by:  dprdf1  20067  dprdcntz2  20072  dprddisj2  20073  dprd2dlem1  20075  dprd2da  20076  dmdprdsplit  20081  dprdsplit  20082  dpjf  20091  dpjidcl  20092  dpjlid  20095  dpjghm  20097  ablfac1eulem  20106  ablfac1eu  20107
  Copyright terms: Public domain W3C validator