MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indisuni Structured version   Visualization version   GIF version

Theorem indisuni 21135
Description: The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indisuni ( I ‘𝐴) = {∅, 𝐴}

Proof of Theorem indisuni
StepHypRef Expression
1 indislem 21132 . . 3 {∅, ( I ‘𝐴)} = {∅, 𝐴}
2 fvex 6425 . . . 4 ( I ‘𝐴) ∈ V
3 indistopon 21133 . . . 4 (( I ‘𝐴) ∈ V → {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴)))
42, 3ax-mp 5 . . 3 {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴))
51, 4eqeltrri 2876 . 2 {∅, 𝐴} ∈ (TopOn‘( I ‘𝐴))
65toponunii 21048 1 ( I ‘𝐴) = {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  wcel 2157  Vcvv 3386  c0 4116  {cpr 4371   cuni 4629   I cid 5220  cfv 6102  TopOnctopon 21042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-iota 6065  df-fun 6104  df-fv 6110  df-top 21026  df-topon 21043
This theorem is referenced by:  indiscld  21223  indisconn  21549  txindis  21765
  Copyright terms: Public domain W3C validator