MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indisuni Structured version   Visualization version   GIF version

Theorem indisuni 22856
Description: The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indisuni ( I β€˜π΄) = βˆͺ {βˆ…, 𝐴}

Proof of Theorem indisuni
StepHypRef Expression
1 indislem 22853 . . 3 {βˆ…, ( I β€˜π΄)} = {βˆ…, 𝐴}
2 fvex 6897 . . . 4 ( I β€˜π΄) ∈ V
3 indistopon 22854 . . . 4 (( I β€˜π΄) ∈ V β†’ {βˆ…, ( I β€˜π΄)} ∈ (TopOnβ€˜( I β€˜π΄)))
42, 3ax-mp 5 . . 3 {βˆ…, ( I β€˜π΄)} ∈ (TopOnβ€˜( I β€˜π΄))
51, 4eqeltrri 2824 . 2 {βˆ…, 𝐴} ∈ (TopOnβ€˜( I β€˜π΄))
65toponunii 22768 1 ( I β€˜π΄) = βˆͺ {βˆ…, 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533   ∈ wcel 2098  Vcvv 3468  βˆ…c0 4317  {cpr 4625  βˆͺ cuni 4902   I cid 5566  β€˜cfv 6536  TopOnctopon 22762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-top 22746  df-topon 22763
This theorem is referenced by:  indiscld  22945  indisconn  23272  txindis  23488
  Copyright terms: Public domain W3C validator