Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indisuni | Structured version Visualization version GIF version |
Description: The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
indisuni | ⊢ ( I ‘𝐴) = ∪ {∅, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indislem 22256 | . . 3 ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} | |
2 | fvex 6838 | . . . 4 ⊢ ( I ‘𝐴) ∈ V | |
3 | indistopon 22257 | . . . 4 ⊢ (( I ‘𝐴) ∈ V → {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴)) |
5 | 1, 4 | eqeltrri 2834 | . 2 ⊢ {∅, 𝐴} ∈ (TopOn‘( I ‘𝐴)) |
6 | 5 | toponunii 22171 | 1 ⊢ ( I ‘𝐴) = ∪ {∅, 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4269 {cpr 4575 ∪ cuni 4852 I cid 5517 ‘cfv 6479 TopOnctopon 22165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-top 22149 df-topon 22166 |
This theorem is referenced by: indiscld 22348 indisconn 22675 txindis 22891 |
Copyright terms: Public domain | W3C validator |