MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indisuni Structured version   Visualization version   GIF version

Theorem indisuni 22913
Description: The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indisuni ( I ‘𝐴) = {∅, 𝐴}

Proof of Theorem indisuni
StepHypRef Expression
1 indislem 22910 . . 3 {∅, ( I ‘𝐴)} = {∅, 𝐴}
2 fvex 6830 . . . 4 ( I ‘𝐴) ∈ V
3 indistopon 22911 . . . 4 (( I ‘𝐴) ∈ V → {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴)))
42, 3ax-mp 5 . . 3 {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴))
51, 4eqeltrri 2828 . 2 {∅, 𝐴} ∈ (TopOn‘( I ‘𝐴))
65toponunii 22826 1 ( I ‘𝐴) = {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  c0 4278  {cpr 4573   cuni 4854   I cid 5505  cfv 6476  TopOnctopon 22820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-top 22804  df-topon 22821
This theorem is referenced by:  indiscld  23001  indisconn  23328  txindis  23544
  Copyright terms: Public domain W3C validator