![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indisuni | Structured version Visualization version GIF version |
Description: The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
indisuni | β’ ( I βπ΄) = βͺ {β , π΄} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indislem 22503 | . . 3 β’ {β , ( I βπ΄)} = {β , π΄} | |
2 | fvex 6905 | . . . 4 β’ ( I βπ΄) β V | |
3 | indistopon 22504 | . . . 4 β’ (( I βπ΄) β V β {β , ( I βπ΄)} β (TopOnβ( I βπ΄))) | |
4 | 2, 3 | ax-mp 5 | . . 3 β’ {β , ( I βπ΄)} β (TopOnβ( I βπ΄)) |
5 | 1, 4 | eqeltrri 2831 | . 2 β’ {β , π΄} β (TopOnβ( I βπ΄)) |
6 | 5 | toponunii 22418 | 1 β’ ( I βπ΄) = βͺ {β , π΄} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 β wcel 2107 Vcvv 3475 β c0 4323 {cpr 4631 βͺ cuni 4909 I cid 5574 βcfv 6544 TopOnctopon 22412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-top 22396 df-topon 22413 |
This theorem is referenced by: indiscld 22595 indisconn 22922 txindis 23138 |
Copyright terms: Public domain | W3C validator |