MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indisuni Structured version   Visualization version   GIF version

Theorem indisuni 22506
Description: The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indisuni ( I β€˜π΄) = βˆͺ {βˆ…, 𝐴}

Proof of Theorem indisuni
StepHypRef Expression
1 indislem 22503 . . 3 {βˆ…, ( I β€˜π΄)} = {βˆ…, 𝐴}
2 fvex 6905 . . . 4 ( I β€˜π΄) ∈ V
3 indistopon 22504 . . . 4 (( I β€˜π΄) ∈ V β†’ {βˆ…, ( I β€˜π΄)} ∈ (TopOnβ€˜( I β€˜π΄)))
42, 3ax-mp 5 . . 3 {βˆ…, ( I β€˜π΄)} ∈ (TopOnβ€˜( I β€˜π΄))
51, 4eqeltrri 2831 . 2 {βˆ…, 𝐴} ∈ (TopOnβ€˜( I β€˜π΄))
65toponunii 22418 1 ( I β€˜π΄) = βˆͺ {βˆ…, 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542   ∈ wcel 2107  Vcvv 3475  βˆ…c0 4323  {cpr 4631  βˆͺ cuni 4909   I cid 5574  β€˜cfv 6544  TopOnctopon 22412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-top 22396  df-topon 22413
This theorem is referenced by:  indiscld  22595  indisconn  22922  txindis  23138
  Copyright terms: Public domain W3C validator