MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphindis Structured version   Visualization version   GIF version

Theorem hmphindis 23713
Description: Homeomorphisms preserve topological indiscreteness. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmphdis.1 𝑋 = 𝐽
Assertion
Ref Expression
hmphindis (𝐽 ≃ {∅, 𝐴} → 𝐽 = {∅, 𝑋})

Proof of Theorem hmphindis
StepHypRef Expression
1 dfsn2 4588 . . 3 {∅} = {∅, ∅}
2 indislem 22916 . . . . . . 7 {∅, ( I ‘𝐴)} = {∅, 𝐴}
3 preq2 4686 . . . . . . . 8 (( I ‘𝐴) = ∅ → {∅, ( I ‘𝐴)} = {∅, ∅})
43, 1eqtr4di 2786 . . . . . . 7 (( I ‘𝐴) = ∅ → {∅, ( I ‘𝐴)} = {∅})
52, 4eqtr3id 2782 . . . . . 6 (( I ‘𝐴) = ∅ → {∅, 𝐴} = {∅})
65breq2d 5105 . . . . 5 (( I ‘𝐴) = ∅ → (𝐽 ≃ {∅, 𝐴} ↔ 𝐽 ≃ {∅}))
76biimpac 478 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 ≃ {∅})
8 hmph0 23711 . . . 4 (𝐽 ≃ {∅} ↔ 𝐽 = {∅})
97, 8sylib 218 . . 3 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 = {∅})
109unieqd 4871 . . . . 5 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 = {∅})
11 hmphdis.1 . . . . 5 𝑋 = 𝐽
12 0ex 5247 . . . . . . 7 ∅ ∈ V
1312unisn 4877 . . . . . 6 {∅} = ∅
1413eqcomi 2742 . . . . 5 ∅ = {∅}
1510, 11, 143eqtr4g 2793 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝑋 = ∅)
1615preq2d 4692 . . 3 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → {∅, 𝑋} = {∅, ∅})
171, 9, 163eqtr4a 2794 . 2 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 = {∅, 𝑋})
18 hmphen 23701 . . . . 5 (𝐽 ≃ {∅, 𝐴} → 𝐽 ≈ {∅, 𝐴})
19 necom 2982 . . . . . . . 8 (( I ‘𝐴) ≠ ∅ ↔ ∅ ≠ ( I ‘𝐴))
20 fvex 6841 . . . . . . . . 9 ( I ‘𝐴) ∈ V
21 enpr2 9902 . . . . . . . . 9 ((∅ ∈ V ∧ ( I ‘𝐴) ∈ V ∧ ∅ ≠ ( I ‘𝐴)) → {∅, ( I ‘𝐴)} ≈ 2o)
2212, 20, 21mp3an12 1453 . . . . . . . 8 (∅ ≠ ( I ‘𝐴) → {∅, ( I ‘𝐴)} ≈ 2o)
2319, 22sylbi 217 . . . . . . 7 (( I ‘𝐴) ≠ ∅ → {∅, ( I ‘𝐴)} ≈ 2o)
2423adantl 481 . . . . . 6 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → {∅, ( I ‘𝐴)} ≈ 2o)
252, 24eqbrtrrid 5129 . . . . 5 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → {∅, 𝐴} ≈ 2o)
26 entr 8935 . . . . 5 ((𝐽 ≈ {∅, 𝐴} ∧ {∅, 𝐴} ≈ 2o) → 𝐽 ≈ 2o)
2718, 25, 26syl2an2r 685 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 ≈ 2o)
28 hmphtop1 23695 . . . . . . 7 (𝐽 ≃ {∅, 𝐴} → 𝐽 ∈ Top)
2928adantr 480 . . . . . 6 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 ∈ Top)
3011toptopon 22833 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3129, 30sylib 218 . . . . 5 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 ∈ (TopOn‘𝑋))
32 en2top 22901 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))
3331, 32syl 17 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))
3427, 33mpbid 232 . . 3 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))
3534simpld 494 . 2 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 = {∅, 𝑋})
3617, 35pm2.61dane 3016 1 (𝐽 ≃ {∅, 𝐴} → 𝐽 = {∅, 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  c0 4282  {csn 4575  {cpr 4577   cuni 4858   class class class wbr 5093   I cid 5513  cfv 6486  2oc2o 8385  cen 8872  Topctop 22809  TopOnctopon 22826  chmph 23670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-top 22810  df-topon 22827  df-cn 23143  df-hmeo 23671  df-hmph 23672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator