MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphindis Structured version   Visualization version   GIF version

Theorem hmphindis 22405
Description: Homeomorphisms preserve topological indiscretion. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmphdis.1 𝑋 = 𝐽
Assertion
Ref Expression
hmphindis (𝐽 ≃ {∅, 𝐴} → 𝐽 = {∅, 𝑋})

Proof of Theorem hmphindis
StepHypRef Expression
1 dfsn2 4580 . . 3 {∅} = {∅, ∅}
2 indislem 21608 . . . . . . 7 {∅, ( I ‘𝐴)} = {∅, 𝐴}
3 preq2 4670 . . . . . . . 8 (( I ‘𝐴) = ∅ → {∅, ( I ‘𝐴)} = {∅, ∅})
43, 1syl6eqr 2874 . . . . . . 7 (( I ‘𝐴) = ∅ → {∅, ( I ‘𝐴)} = {∅})
52, 4syl5eqr 2870 . . . . . 6 (( I ‘𝐴) = ∅ → {∅, 𝐴} = {∅})
65breq2d 5078 . . . . 5 (( I ‘𝐴) = ∅ → (𝐽 ≃ {∅, 𝐴} ↔ 𝐽 ≃ {∅}))
76biimpac 481 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 ≃ {∅})
8 hmph0 22403 . . . 4 (𝐽 ≃ {∅} ↔ 𝐽 = {∅})
97, 8sylib 220 . . 3 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 = {∅})
109unieqd 4852 . . . . 5 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 = {∅})
11 hmphdis.1 . . . . 5 𝑋 = 𝐽
12 0ex 5211 . . . . . . 7 ∅ ∈ V
1312unisn 4858 . . . . . 6 {∅} = ∅
1413eqcomi 2830 . . . . 5 ∅ = {∅}
1510, 11, 143eqtr4g 2881 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝑋 = ∅)
1615preq2d 4676 . . 3 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → {∅, 𝑋} = {∅, ∅})
171, 9, 163eqtr4a 2882 . 2 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 = {∅, 𝑋})
18 hmphen 22393 . . . . 5 (𝐽 ≃ {∅, 𝐴} → 𝐽 ≈ {∅, 𝐴})
19 necom 3069 . . . . . . . 8 (( I ‘𝐴) ≠ ∅ ↔ ∅ ≠ ( I ‘𝐴))
20 fvex 6683 . . . . . . . . 9 ( I ‘𝐴) ∈ V
21 pr2nelem 9430 . . . . . . . . 9 ((∅ ∈ V ∧ ( I ‘𝐴) ∈ V ∧ ∅ ≠ ( I ‘𝐴)) → {∅, ( I ‘𝐴)} ≈ 2o)
2212, 20, 21mp3an12 1447 . . . . . . . 8 (∅ ≠ ( I ‘𝐴) → {∅, ( I ‘𝐴)} ≈ 2o)
2319, 22sylbi 219 . . . . . . 7 (( I ‘𝐴) ≠ ∅ → {∅, ( I ‘𝐴)} ≈ 2o)
2423adantl 484 . . . . . 6 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → {∅, ( I ‘𝐴)} ≈ 2o)
252, 24eqbrtrrid 5102 . . . . 5 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → {∅, 𝐴} ≈ 2o)
26 entr 8561 . . . . 5 ((𝐽 ≈ {∅, 𝐴} ∧ {∅, 𝐴} ≈ 2o) → 𝐽 ≈ 2o)
2718, 25, 26syl2an2r 683 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 ≈ 2o)
28 hmphtop1 22387 . . . . . . 7 (𝐽 ≃ {∅, 𝐴} → 𝐽 ∈ Top)
2928adantr 483 . . . . . 6 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 ∈ Top)
3011toptopon 21525 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3129, 30sylib 220 . . . . 5 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 ∈ (TopOn‘𝑋))
32 en2top 21593 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))
3331, 32syl 17 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))
3427, 33mpbid 234 . . 3 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))
3534simpld 497 . 2 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 = {∅, 𝑋})
3617, 35pm2.61dane 3104 1 (𝐽 ≃ {∅, 𝐴} → 𝐽 = {∅, 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  c0 4291  {csn 4567  {cpr 4569   cuni 4838   class class class wbr 5066   I cid 5459  cfv 6355  2oc2o 8096  cen 8506  Topctop 21501  TopOnctopon 21518  chmph 22362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-1o 8102  df-2o 8103  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-top 21502  df-topon 21519  df-cn 21835  df-hmeo 22363  df-hmph 22364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator