MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphindis Structured version   Visualization version   GIF version

Theorem hmphindis 23700
Description: Homeomorphisms preserve topological indiscreteness. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmphdis.1 𝑋 = 𝐽
Assertion
Ref Expression
hmphindis (𝐽 ≃ {∅, 𝐴} → 𝐽 = {∅, 𝑋})

Proof of Theorem hmphindis
StepHypRef Expression
1 dfsn2 4592 . . 3 {∅} = {∅, ∅}
2 indislem 22903 . . . . . . 7 {∅, ( I ‘𝐴)} = {∅, 𝐴}
3 preq2 4688 . . . . . . . 8 (( I ‘𝐴) = ∅ → {∅, ( I ‘𝐴)} = {∅, ∅})
43, 1eqtr4di 2782 . . . . . . 7 (( I ‘𝐴) = ∅ → {∅, ( I ‘𝐴)} = {∅})
52, 4eqtr3id 2778 . . . . . 6 (( I ‘𝐴) = ∅ → {∅, 𝐴} = {∅})
65breq2d 5107 . . . . 5 (( I ‘𝐴) = ∅ → (𝐽 ≃ {∅, 𝐴} ↔ 𝐽 ≃ {∅}))
76biimpac 478 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 ≃ {∅})
8 hmph0 23698 . . . 4 (𝐽 ≃ {∅} ↔ 𝐽 = {∅})
97, 8sylib 218 . . 3 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 = {∅})
109unieqd 4874 . . . . 5 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 = {∅})
11 hmphdis.1 . . . . 5 𝑋 = 𝐽
12 0ex 5249 . . . . . . 7 ∅ ∈ V
1312unisn 4880 . . . . . 6 {∅} = ∅
1413eqcomi 2738 . . . . 5 ∅ = {∅}
1510, 11, 143eqtr4g 2789 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝑋 = ∅)
1615preq2d 4694 . . 3 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → {∅, 𝑋} = {∅, ∅})
171, 9, 163eqtr4a 2790 . 2 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 = {∅, 𝑋})
18 hmphen 23688 . . . . 5 (𝐽 ≃ {∅, 𝐴} → 𝐽 ≈ {∅, 𝐴})
19 necom 2978 . . . . . . . 8 (( I ‘𝐴) ≠ ∅ ↔ ∅ ≠ ( I ‘𝐴))
20 fvex 6839 . . . . . . . . 9 ( I ‘𝐴) ∈ V
21 enpr2 9917 . . . . . . . . 9 ((∅ ∈ V ∧ ( I ‘𝐴) ∈ V ∧ ∅ ≠ ( I ‘𝐴)) → {∅, ( I ‘𝐴)} ≈ 2o)
2212, 20, 21mp3an12 1453 . . . . . . . 8 (∅ ≠ ( I ‘𝐴) → {∅, ( I ‘𝐴)} ≈ 2o)
2319, 22sylbi 217 . . . . . . 7 (( I ‘𝐴) ≠ ∅ → {∅, ( I ‘𝐴)} ≈ 2o)
2423adantl 481 . . . . . 6 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → {∅, ( I ‘𝐴)} ≈ 2o)
252, 24eqbrtrrid 5131 . . . . 5 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → {∅, 𝐴} ≈ 2o)
26 entr 8938 . . . . 5 ((𝐽 ≈ {∅, 𝐴} ∧ {∅, 𝐴} ≈ 2o) → 𝐽 ≈ 2o)
2718, 25, 26syl2an2r 685 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 ≈ 2o)
28 hmphtop1 23682 . . . . . . 7 (𝐽 ≃ {∅, 𝐴} → 𝐽 ∈ Top)
2928adantr 480 . . . . . 6 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 ∈ Top)
3011toptopon 22820 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3129, 30sylib 218 . . . . 5 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 ∈ (TopOn‘𝑋))
32 en2top 22888 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))
3331, 32syl 17 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))
3427, 33mpbid 232 . . 3 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))
3534simpld 494 . 2 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 = {∅, 𝑋})
3617, 35pm2.61dane 3012 1 (𝐽 ≃ {∅, 𝐴} → 𝐽 = {∅, 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  c0 4286  {csn 4579  {cpr 4581   cuni 4861   class class class wbr 5095   I cid 5517  cfv 6486  2oc2o 8389  cen 8876  Topctop 22796  TopOnctopon 22813  chmph 23657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-top 22797  df-topon 22814  df-cn 23130  df-hmeo 23658  df-hmph 23659
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator