| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspid | Structured version Visualization version GIF version | ||
| Description: The span of a subspace is itself. (spanid 31283 analog.) (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspid.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspid.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspid | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | lspid.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lssss 20849 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
| 4 | lspid.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | 1, 2, 4 | lspval 20888 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ (Base‘𝑊)) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
| 6 | 3, 5 | sylan2 593 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
| 7 | intmin 4935 | . . 3 ⊢ (𝑈 ∈ 𝑆 → ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} = 𝑈) | |
| 8 | 7 | adantl 481 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} = 𝑈) |
| 9 | 6, 8 | eqtrd 2765 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 ∩ cint 4913 ‘cfv 6514 Basecbs 17186 LModclmod 20773 LSubSpclss 20844 LSpanclspn 20884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-lmod 20775 df-lss 20845 df-lsp 20885 |
| This theorem is referenced by: lspidm 20899 lspssp 20901 lspsn0 20921 lspsolvlem 21059 lbsextlem3 21077 islshpsm 38980 lshpnel2N 38985 lssats 39012 lkrlsp3 39104 dochspocN 41381 dochsatshp 41452 filnm 43086 |
| Copyright terms: Public domain | W3C validator |