MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspid Structured version   Visualization version   GIF version

Theorem lspid 20980
Description: The span of a subspace is itself. (spanid 31366 analog.) (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspid.s 𝑆 = (LSubSp‘𝑊)
lspid.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspid ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)

Proof of Theorem lspid
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 lspid.s . . . 4 𝑆 = (LSubSp‘𝑊)
31, 2lssss 20934 . . 3 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
4 lspid.n . . . 4 𝑁 = (LSpan‘𝑊)
51, 2, 4lspval 20973 . . 3 ((𝑊 ∈ LMod ∧ 𝑈 ⊆ (Base‘𝑊)) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
63, 5sylan2 593 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
7 intmin 4968 . . 3 (𝑈𝑆 {𝑡𝑆𝑈𝑡} = 𝑈)
87adantl 481 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑡𝑆𝑈𝑡} = 𝑈)
96, 8eqtrd 2777 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  wss 3951   cint 4946  cfv 6561  Basecbs 17247  LModclmod 20858  LSubSpclss 20929  LSpanclspn 20969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-lmod 20860  df-lss 20930  df-lsp 20970
This theorem is referenced by:  lspidm  20984  lspssp  20986  lspsn0  21006  lspsolvlem  21144  lbsextlem3  21162  islshpsm  38981  lshpnel2N  38986  lssats  39013  lkrlsp3  39105  dochspocN  41382  dochsatshp  41453  filnm  43102
  Copyright terms: Public domain W3C validator