![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspid | Structured version Visualization version GIF version |
Description: The span of a subspace is itself. (spanid 31072 analog.) (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspid.s | β’ π = (LSubSpβπ) |
lspid.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspid | β’ ((π β LMod β§ π β π) β (πβπ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
2 | lspid.s | . . . 4 β’ π = (LSubSpβπ) | |
3 | 1, 2 | lssss 20775 | . . 3 β’ (π β π β π β (Baseβπ)) |
4 | lspid.n | . . . 4 β’ π = (LSpanβπ) | |
5 | 1, 2, 4 | lspval 20814 | . . 3 β’ ((π β LMod β§ π β (Baseβπ)) β (πβπ) = β© {π‘ β π β£ π β π‘}) |
6 | 3, 5 | sylan2 592 | . 2 β’ ((π β LMod β§ π β π) β (πβπ) = β© {π‘ β π β£ π β π‘}) |
7 | intmin 4963 | . . 3 β’ (π β π β β© {π‘ β π β£ π β π‘} = π) | |
8 | 7 | adantl 481 | . 2 β’ ((π β LMod β§ π β π) β β© {π‘ β π β£ π β π‘} = π) |
9 | 6, 8 | eqtrd 2764 | 1 β’ ((π β LMod β§ π β π) β (πβπ) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 {crab 3424 β wss 3941 β© cint 4941 βcfv 6534 Basecbs 17145 LModclmod 20698 LSubSpclss 20770 LSpanclspn 20810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-0g 17388 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-lmod 20700 df-lss 20771 df-lsp 20811 |
This theorem is referenced by: lspidm 20825 lspssp 20827 lspsn0 20847 lspsolvlem 20985 lbsextlem3 21003 islshpsm 38344 lshpnel2N 38349 lssats 38376 lkrlsp3 38468 dochspocN 40745 dochsatshp 40816 filnm 42346 |
Copyright terms: Public domain | W3C validator |