Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspid | Structured version Visualization version GIF version |
Description: The span of a subspace is itself. (spanid 29705 analog.) (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspid.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspid.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspid | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | lspid.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssss 20196 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
4 | lspid.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | 1, 2, 4 | lspval 20235 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ (Base‘𝑊)) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
6 | 3, 5 | sylan2 593 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
7 | intmin 4905 | . . 3 ⊢ (𝑈 ∈ 𝑆 → ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} = 𝑈) | |
8 | 7 | adantl 482 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} = 𝑈) |
9 | 6, 8 | eqtrd 2780 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 {crab 3070 ⊆ wss 3892 ∩ cint 4885 ‘cfv 6432 Basecbs 16910 LModclmod 20121 LSubSpclss 20191 LSpanclspn 20231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-lmod 20123 df-lss 20192 df-lsp 20232 |
This theorem is referenced by: lspidm 20246 lspssp 20248 lspsn0 20268 lspsolvlem 20402 lbsextlem3 20420 islshpsm 36990 lshpnel2N 36995 lssats 37022 lkrlsp3 37114 dochspocN 39390 dochsatshp 39461 filnm 40912 |
Copyright terms: Public domain | W3C validator |