MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspid Structured version   Visualization version   GIF version

Theorem lspid 20888
Description: The span of a subspace is itself. (spanid 31276 analog.) (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspid.s 𝑆 = (LSubSp‘𝑊)
lspid.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspid ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)

Proof of Theorem lspid
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 lspid.s . . . 4 𝑆 = (LSubSp‘𝑊)
31, 2lssss 20842 . . 3 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
4 lspid.n . . . 4 𝑁 = (LSpan‘𝑊)
51, 2, 4lspval 20881 . . 3 ((𝑊 ∈ LMod ∧ 𝑈 ⊆ (Base‘𝑊)) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
63, 5sylan2 593 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
7 intmin 4932 . . 3 (𝑈𝑆 {𝑡𝑆𝑈𝑡} = 𝑈)
87adantl 481 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑡𝑆𝑈𝑡} = 𝑈)
96, 8eqtrd 2764 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  wss 3914   cint 4910  cfv 6511  Basecbs 17179  LModclmod 20766  LSubSpclss 20837  LSpanclspn 20877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-lmod 20768  df-lss 20838  df-lsp 20878
This theorem is referenced by:  lspidm  20892  lspssp  20894  lspsn0  20914  lspsolvlem  21052  lbsextlem3  21070  islshpsm  38973  lshpnel2N  38978  lssats  39005  lkrlsp3  39097  dochspocN  41374  dochsatshp  41445  filnm  43079
  Copyright terms: Public domain W3C validator