![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspid | Structured version Visualization version GIF version |
Description: The span of a subspace is itself. (spanid 30595 analog.) (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspid.s | β’ π = (LSubSpβπ) |
lspid.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspid | β’ ((π β LMod β§ π β π) β (πβπ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
2 | lspid.s | . . . 4 β’ π = (LSubSpβπ) | |
3 | 1, 2 | lssss 20546 | . . 3 β’ (π β π β π β (Baseβπ)) |
4 | lspid.n | . . . 4 β’ π = (LSpanβπ) | |
5 | 1, 2, 4 | lspval 20585 | . . 3 β’ ((π β LMod β§ π β (Baseβπ)) β (πβπ) = β© {π‘ β π β£ π β π‘}) |
6 | 3, 5 | sylan2 593 | . 2 β’ ((π β LMod β§ π β π) β (πβπ) = β© {π‘ β π β£ π β π‘}) |
7 | intmin 4972 | . . 3 β’ (π β π β β© {π‘ β π β£ π β π‘} = π) | |
8 | 7 | adantl 482 | . 2 β’ ((π β LMod β§ π β π) β β© {π‘ β π β£ π β π‘} = π) |
9 | 6, 8 | eqtrd 2772 | 1 β’ ((π β LMod β§ π β π) β (πβπ) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 β wss 3948 β© cint 4950 βcfv 6543 Basecbs 17143 LModclmod 20470 LSubSpclss 20541 LSpanclspn 20581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-lmod 20472 df-lss 20542 df-lsp 20582 |
This theorem is referenced by: lspidm 20596 lspssp 20598 lspsn0 20618 lspsolvlem 20754 lbsextlem3 20772 islshpsm 37845 lshpnel2N 37850 lssats 37877 lkrlsp3 37969 dochspocN 40246 dochsatshp 40317 filnm 41822 |
Copyright terms: Public domain | W3C validator |