| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > igenidl2 | Structured version Visualization version GIF version | ||
| Description: The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| igenidl2 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | eqid 2733 | . . . 4 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
| 3 | 1, 2 | idlss 38076 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st ‘𝑅)) |
| 4 | 1, 2 | igenval 38121 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st ‘𝑅)) → (𝑅 IdlGen 𝐼) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗}) |
| 5 | 3, 4 | syldan 591 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗}) |
| 6 | intmin 4918 | . . 3 ⊢ (𝐼 ∈ (Idl‘𝑅) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗} = 𝐼) | |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗} = 𝐼) |
| 8 | 5, 7 | eqtrd 2768 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 ∩ cint 4897 ran crn 5620 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 RingOpscrngo 37954 Idlcidl 38067 IdlGen cigen 38119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-grpo 30475 df-gid 30476 df-ablo 30527 df-rngo 37955 df-idl 38070 df-igen 38120 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |