Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenidl2 Structured version   Visualization version   GIF version

Theorem igenidl2 36150
Description: The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
igenidl2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼)

Proof of Theorem igenidl2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2738 . . . 4 ran (1st𝑅) = ran (1st𝑅)
31, 2idlss 36101 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st𝑅))
41, 2igenval 36146 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st𝑅)) → (𝑅 IdlGen 𝐼) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗})
53, 4syldan 590 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗})
6 intmin 4896 . . 3 (𝐼 ∈ (Idl‘𝑅) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗} = 𝐼)
76adantl 481 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗} = 𝐼)
85, 7eqtrd 2778 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  wss 3883   cint 4876  ran crn 5581  cfv 6418  (class class class)co 7255  1st c1st 7802  RingOpscrngo 35979  Idlcidl 36092   IdlGen cigen 36144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-grpo 28756  df-gid 28757  df-ablo 28808  df-rngo 35980  df-idl 36095  df-igen 36145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator