| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > igenidl2 | Structured version Visualization version GIF version | ||
| Description: The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| igenidl2 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | eqid 2729 | . . . 4 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
| 3 | 1, 2 | idlss 38010 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st ‘𝑅)) |
| 4 | 1, 2 | igenval 38055 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st ‘𝑅)) → (𝑅 IdlGen 𝐼) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗}) |
| 5 | 3, 4 | syldan 591 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗}) |
| 6 | intmin 4932 | . . 3 ⊢ (𝐼 ∈ (Idl‘𝑅) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗} = 𝐼) | |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗} = 𝐼) |
| 8 | 5, 7 | eqtrd 2764 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 ∩ cint 4910 ran crn 5639 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 RingOpscrngo 37888 Idlcidl 38001 IdlGen cigen 38053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-grpo 30422 df-gid 30423 df-ablo 30474 df-rngo 37889 df-idl 38004 df-igen 38054 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |