Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenidl2 Structured version   Visualization version   GIF version

Theorem igenidl2 37779
Description: The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
igenidl2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼)

Proof of Theorem igenidl2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2726 . . . 4 ran (1st𝑅) = ran (1st𝑅)
31, 2idlss 37730 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st𝑅))
41, 2igenval 37775 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st𝑅)) → (𝑅 IdlGen 𝐼) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗})
53, 4syldan 589 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗})
6 intmin 4968 . . 3 (𝐼 ∈ (Idl‘𝑅) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗} = 𝐼)
76adantl 480 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗} = 𝐼)
85, 7eqtrd 2766 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {crab 3419  wss 3946   cint 4946  ran crn 5675  cfv 6546  (class class class)co 7416  1st c1st 7993  RingOpscrngo 37608  Idlcidl 37721   IdlGen cigen 37773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-fo 6552  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-grpo 30423  df-gid 30424  df-ablo 30475  df-rngo 37609  df-idl 37724  df-igen 37774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator