![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > igenidl2 | Structured version Visualization version GIF version |
Description: The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
igenidl2 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | eqid 2731 | . . . 4 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
3 | 1, 2 | idlss 37188 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st ‘𝑅)) |
4 | 1, 2 | igenval 37233 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st ‘𝑅)) → (𝑅 IdlGen 𝐼) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗}) |
5 | 3, 4 | syldan 590 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗}) |
6 | intmin 4972 | . . 3 ⊢ (𝐼 ∈ (Idl‘𝑅) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗} = 𝐼) | |
7 | 6 | adantl 481 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗} = 𝐼) |
8 | 5, 7 | eqtrd 2771 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {crab 3431 ⊆ wss 3948 ∩ cint 4950 ran crn 5677 ‘cfv 6543 (class class class)co 7412 1st c1st 7977 RingOpscrngo 37066 Idlcidl 37179 IdlGen cigen 37231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-grpo 30014 df-gid 30015 df-ablo 30066 df-rngo 37067 df-idl 37182 df-igen 37232 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |