Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenidl2 Structured version   Visualization version   GIF version

Theorem igenidl2 38125
Description: The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
igenidl2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼)

Proof of Theorem igenidl2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2733 . . . 4 ran (1st𝑅) = ran (1st𝑅)
31, 2idlss 38076 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st𝑅))
41, 2igenval 38121 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st𝑅)) → (𝑅 IdlGen 𝐼) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗})
53, 4syldan 591 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗})
6 intmin 4918 . . 3 (𝐼 ∈ (Idl‘𝑅) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗} = 𝐼)
76adantl 481 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗} = 𝐼)
85, 7eqtrd 2768 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  wss 3898   cint 4897  ran crn 5620  cfv 6486  (class class class)co 7352  1st c1st 7925  RingOpscrngo 37954  Idlcidl 38067   IdlGen cigen 38119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-grpo 30475  df-gid 30476  df-ablo 30527  df-rngo 37955  df-idl 38070  df-igen 38120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator