Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenidl2 Structured version   Visualization version   GIF version

Theorem igenidl2 38094
Description: The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
igenidl2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼)

Proof of Theorem igenidl2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2736 . . . 4 ran (1st𝑅) = ran (1st𝑅)
31, 2idlss 38045 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st𝑅))
41, 2igenval 38090 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st𝑅)) → (𝑅 IdlGen 𝐼) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗})
53, 4syldan 591 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗})
6 intmin 4949 . . 3 (𝐼 ∈ (Idl‘𝑅) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗} = 𝐼)
76adantl 481 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗} = 𝐼)
85, 7eqtrd 2771 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  wss 3931   cint 4927  ran crn 5660  cfv 6536  (class class class)co 7410  1st c1st 7991  RingOpscrngo 37923  Idlcidl 38036   IdlGen cigen 38088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-grpo 30479  df-gid 30480  df-ablo 30531  df-rngo 37924  df-idl 38039  df-igen 38089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator