Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenidl2 Structured version   Visualization version   GIF version

Theorem igenidl2 38104
Description: The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
igenidl2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼)

Proof of Theorem igenidl2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2731 . . . 4 ran (1st𝑅) = ran (1st𝑅)
31, 2idlss 38055 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st𝑅))
41, 2igenval 38100 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st𝑅)) → (𝑅 IdlGen 𝐼) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗})
53, 4syldan 591 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗})
6 intmin 4918 . . 3 (𝐼 ∈ (Idl‘𝑅) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗} = 𝐼)
76adantl 481 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼𝑗} = 𝐼)
85, 7eqtrd 2766 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  wss 3902   cint 4897  ran crn 5617  cfv 6481  (class class class)co 7346  1st c1st 7919  RingOpscrngo 37933  Idlcidl 38046   IdlGen cigen 38098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-grpo 30468  df-gid 30469  df-ablo 30520  df-rngo 37934  df-idl 38049  df-igen 38099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator