![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > igenidl2 | Structured version Visualization version GIF version |
Description: The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
igenidl2 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | eqid 2726 | . . . 4 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
3 | 1, 2 | idlss 37730 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st ‘𝑅)) |
4 | 1, 2 | igenval 37775 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st ‘𝑅)) → (𝑅 IdlGen 𝐼) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗}) |
5 | 3, 4 | syldan 589 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗}) |
6 | intmin 4968 | . . 3 ⊢ (𝐼 ∈ (Idl‘𝑅) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗} = 𝐼) | |
7 | 6 | adantl 480 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝐼 ⊆ 𝑗} = 𝐼) |
8 | 5, 7 | eqtrd 2766 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 ⊆ wss 3946 ∩ cint 4946 ran crn 5675 ‘cfv 6546 (class class class)co 7416 1st c1st 7993 RingOpscrngo 37608 Idlcidl 37721 IdlGen cigen 37773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-fo 6552 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-grpo 30423 df-gid 30424 df-ablo 30475 df-rngo 37609 df-idl 37724 df-igen 37774 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |