Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaocN | Structured version Visualization version GIF version |
Description: Value of partial isomorphism A at lattice orthocomplement (using a Sasaki projection to get orthocomplement relative to the fiducial co-atom 𝑊). (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diaoc.j | ⊢ ∨ = (join‘𝐾) |
diaoc.m | ⊢ ∧ = (meet‘𝐾) |
diaoc.o | ⊢ ⊥ = (oc‘𝐾) |
diaoc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diaoc.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diaoc.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
diaoc.n | ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaocN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝑁‘(𝐼‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | diaoc.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diaoc.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | diadmclN 39051 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾)) |
6 | eqid 2738 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | 6, 3, 4 | diadmleN 39052 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊) |
8 | diaoc.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | 2, 6, 3, 8, 4 | diass 39056 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑋(le‘𝐾)𝑊)) → (𝐼‘𝑋) ⊆ 𝑇) |
10 | 1, 5, 7, 9 | syl12anc 834 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ⊆ 𝑇) |
11 | diaoc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
12 | diaoc.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
13 | diaoc.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
14 | diaoc.n | . . . 4 ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) | |
15 | 11, 12, 13, 3, 8, 4, 14 | docavalN 39137 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ⊆ 𝑇) → (𝑁‘(𝐼‘𝑋)) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
16 | 10, 15 | syldan 591 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑁‘(𝐼‘𝑋)) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
17 | 3, 4 | diaclN 39064 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ ran 𝐼) |
18 | intmin 4899 | . . . . . . . 8 ⊢ ((𝐼‘𝑋) ∈ ran 𝐼 → ∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧} = (𝐼‘𝑋)) | |
19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧} = (𝐼‘𝑋)) |
20 | 19 | fveq2d 6778 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧}) = (◡𝐼‘(𝐼‘𝑋))) |
21 | 3, 4 | diaf11N 39063 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
22 | f1ocnvfv1 7148 | . . . . . . 7 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘(𝐼‘𝑋)) = 𝑋) | |
23 | 21, 22 | sylan 580 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘(𝐼‘𝑋)) = 𝑋) |
24 | 20, 23 | eqtrd 2778 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧}) = 𝑋) |
25 | 24 | fveq2d 6778 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) = ( ⊥ ‘𝑋)) |
26 | 25 | oveq1d 7290 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) = (( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊))) |
27 | 26 | fvoveq1d 7297 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
28 | 16, 27 | eqtr2d 2779 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝑁‘(𝐼‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ∩ cint 4879 class class class wbr 5074 ◡ccnv 5588 dom cdm 5589 ran crn 5590 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 occoc 16970 joincjn 18029 meetcmee 18030 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 DIsoAcdia 39042 ocAcocaN 39133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-undef 8089 df-map 8617 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-disoa 39043 df-docaN 39134 |
This theorem is referenced by: doca2N 39140 djajN 39151 |
Copyright terms: Public domain | W3C validator |