Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaocN | Structured version Visualization version GIF version |
Description: Value of partial isomorphism A at lattice orthocomplement (using a Sasaki projection to get orthocomplement relative to the fiducial co-atom 𝑊). (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diaoc.j | ⊢ ∨ = (join‘𝐾) |
diaoc.m | ⊢ ∧ = (meet‘𝐾) |
diaoc.o | ⊢ ⊥ = (oc‘𝐾) |
diaoc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diaoc.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diaoc.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
diaoc.n | ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaocN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝑁‘(𝐼‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | eqid 2758 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | diaoc.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diaoc.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | diadmclN 38647 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾)) |
6 | eqid 2758 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | 6, 3, 4 | diadmleN 38648 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊) |
8 | diaoc.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | 2, 6, 3, 8, 4 | diass 38652 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑋(le‘𝐾)𝑊)) → (𝐼‘𝑋) ⊆ 𝑇) |
10 | 1, 5, 7, 9 | syl12anc 835 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ⊆ 𝑇) |
11 | diaoc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
12 | diaoc.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
13 | diaoc.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
14 | diaoc.n | . . . 4 ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) | |
15 | 11, 12, 13, 3, 8, 4, 14 | docavalN 38733 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ⊆ 𝑇) → (𝑁‘(𝐼‘𝑋)) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
16 | 10, 15 | syldan 594 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑁‘(𝐼‘𝑋)) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
17 | 3, 4 | diaclN 38660 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ ran 𝐼) |
18 | intmin 4861 | . . . . . . . 8 ⊢ ((𝐼‘𝑋) ∈ ran 𝐼 → ∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧} = (𝐼‘𝑋)) | |
19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧} = (𝐼‘𝑋)) |
20 | 19 | fveq2d 6667 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧}) = (◡𝐼‘(𝐼‘𝑋))) |
21 | 3, 4 | diaf11N 38659 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
22 | f1ocnvfv1 7031 | . . . . . . 7 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘(𝐼‘𝑋)) = 𝑋) | |
23 | 21, 22 | sylan 583 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘(𝐼‘𝑋)) = 𝑋) |
24 | 20, 23 | eqtrd 2793 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧}) = 𝑋) |
25 | 24 | fveq2d 6667 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) = ( ⊥ ‘𝑋)) |
26 | 25 | oveq1d 7171 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) = (( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊))) |
27 | 26 | fvoveq1d 7178 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
28 | 16, 27 | eqtr2d 2794 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝑁‘(𝐼‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 ⊆ wss 3860 ∩ cint 4841 class class class wbr 5036 ◡ccnv 5527 dom cdm 5528 ran crn 5529 –1-1-onto→wf1o 6339 ‘cfv 6340 (class class class)co 7156 Basecbs 16554 lecple 16643 occoc 16644 joincjn 17633 meetcmee 17634 HLchlt 36960 LHypclh 37594 LTrncltrn 37711 DIsoAcdia 38638 ocAcocaN 38729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-riotaBAD 36563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-undef 7955 df-map 8424 df-proset 17617 df-poset 17635 df-plt 17647 df-lub 17663 df-glb 17664 df-join 17665 df-meet 17666 df-p0 17728 df-p1 17729 df-lat 17735 df-clat 17797 df-oposet 36786 df-ol 36788 df-oml 36789 df-covers 36876 df-ats 36877 df-atl 36908 df-cvlat 36932 df-hlat 36961 df-llines 37108 df-lplanes 37109 df-lvols 37110 df-lines 37111 df-psubsp 37113 df-pmap 37114 df-padd 37406 df-lhyp 37598 df-laut 37599 df-ldil 37714 df-ltrn 37715 df-trl 37769 df-disoa 38639 df-docaN 38730 |
This theorem is referenced by: doca2N 38736 djajN 38747 |
Copyright terms: Public domain | W3C validator |