![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaocN | Structured version Visualization version GIF version |
Description: Value of partial isomorphism A at lattice orthocomplement (using a Sasaki projection to get orthocomplement relative to the fiducial co-atom 𝑊). (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diaoc.j | ⊢ ∨ = (join‘𝐾) |
diaoc.m | ⊢ ∧ = (meet‘𝐾) |
diaoc.o | ⊢ ⊥ = (oc‘𝐾) |
diaoc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diaoc.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diaoc.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
diaoc.n | ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaocN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝑁‘(𝐼‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | diaoc.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diaoc.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | diadmclN 41020 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾)) |
6 | eqid 2735 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | 6, 3, 4 | diadmleN 41021 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊) |
8 | diaoc.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | 2, 6, 3, 8, 4 | diass 41025 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑋(le‘𝐾)𝑊)) → (𝐼‘𝑋) ⊆ 𝑇) |
10 | 1, 5, 7, 9 | syl12anc 837 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ⊆ 𝑇) |
11 | diaoc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
12 | diaoc.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
13 | diaoc.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
14 | diaoc.n | . . . 4 ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) | |
15 | 11, 12, 13, 3, 8, 4, 14 | docavalN 41106 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ⊆ 𝑇) → (𝑁‘(𝐼‘𝑋)) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
16 | 10, 15 | syldan 591 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑁‘(𝐼‘𝑋)) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
17 | 3, 4 | diaclN 41033 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ ran 𝐼) |
18 | intmin 4973 | . . . . . . . 8 ⊢ ((𝐼‘𝑋) ∈ ran 𝐼 → ∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧} = (𝐼‘𝑋)) | |
19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧} = (𝐼‘𝑋)) |
20 | 19 | fveq2d 6911 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧}) = (◡𝐼‘(𝐼‘𝑋))) |
21 | 3, 4 | diaf11N 41032 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
22 | f1ocnvfv1 7296 | . . . . . . 7 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘(𝐼‘𝑋)) = 𝑋) | |
23 | 21, 22 | sylan 580 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘(𝐼‘𝑋)) = 𝑋) |
24 | 20, 23 | eqtrd 2775 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧}) = 𝑋) |
25 | 24 | fveq2d 6911 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) = ( ⊥ ‘𝑋)) |
26 | 25 | oveq1d 7446 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) = (( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊))) |
27 | 26 | fvoveq1d 7453 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
28 | 16, 27 | eqtr2d 2776 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝑁‘(𝐼‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 ⊆ wss 3963 ∩ cint 4951 class class class wbr 5148 ◡ccnv 5688 dom cdm 5689 ran crn 5690 –1-1-onto→wf1o 6562 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 lecple 17305 occoc 17306 joincjn 18369 meetcmee 18370 HLchlt 39332 LHypclh 39967 LTrncltrn 40084 DIsoAcdia 41011 ocAcocaN 41102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-undef 8297 df-map 8867 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-disoa 41012 df-docaN 41103 |
This theorem is referenced by: doca2N 41109 djajN 41120 |
Copyright terms: Public domain | W3C validator |