Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaocN | Structured version Visualization version GIF version |
Description: Value of partial isomorphism A at lattice orthocomplement (using a Sasaki projection to get orthocomplement relative to the fiducial co-atom 𝑊). (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diaoc.j | ⊢ ∨ = (join‘𝐾) |
diaoc.m | ⊢ ∧ = (meet‘𝐾) |
diaoc.o | ⊢ ⊥ = (oc‘𝐾) |
diaoc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diaoc.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
diaoc.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
diaoc.n | ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diaocN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝑁‘(𝐼‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | diaoc.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | diaoc.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | diadmclN 38978 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾)) |
6 | eqid 2738 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | 6, 3, 4 | diadmleN 38979 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊) |
8 | diaoc.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | 2, 6, 3, 8, 4 | diass 38983 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑋(le‘𝐾)𝑊)) → (𝐼‘𝑋) ⊆ 𝑇) |
10 | 1, 5, 7, 9 | syl12anc 833 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ⊆ 𝑇) |
11 | diaoc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
12 | diaoc.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
13 | diaoc.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
14 | diaoc.n | . . . 4 ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) | |
15 | 11, 12, 13, 3, 8, 4, 14 | docavalN 39064 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ⊆ 𝑇) → (𝑁‘(𝐼‘𝑋)) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
16 | 10, 15 | syldan 590 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑁‘(𝐼‘𝑋)) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
17 | 3, 4 | diaclN 38991 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ ran 𝐼) |
18 | intmin 4896 | . . . . . . . 8 ⊢ ((𝐼‘𝑋) ∈ ran 𝐼 → ∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧} = (𝐼‘𝑋)) | |
19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧} = (𝐼‘𝑋)) |
20 | 19 | fveq2d 6760 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧}) = (◡𝐼‘(𝐼‘𝑋))) |
21 | 3, 4 | diaf11N 38990 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
22 | f1ocnvfv1 7129 | . . . . . . 7 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘(𝐼‘𝑋)) = 𝑋) | |
23 | 21, 22 | sylan 579 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘(𝐼‘𝑋)) = 𝑋) |
24 | 20, 23 | eqtrd 2778 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧}) = 𝑋) |
25 | 24 | fveq2d 6760 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) = ( ⊥ ‘𝑋)) |
26 | 25 | oveq1d 7270 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) = (( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊))) |
27 | 26 | fvoveq1d 7277 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ (𝐼‘𝑋) ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
28 | 16, 27 | eqtr2d 2779 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝑁‘(𝐼‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ∩ cint 4876 class class class wbr 5070 ◡ccnv 5579 dom cdm 5580 ran crn 5581 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 occoc 16896 joincjn 17944 meetcmee 17945 HLchlt 37291 LHypclh 37925 LTrncltrn 38042 DIsoAcdia 38969 ocAcocaN 39060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-undef 8060 df-map 8575 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-disoa 38970 df-docaN 39061 |
This theorem is referenced by: doca2N 39067 djajN 39078 |
Copyright terms: Public domain | W3C validator |