![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > harsucnn | Structured version Visualization version GIF version |
Description: The next cardinal after a finite ordinal is the successor ordinal. (Contributed by RP, 5-Nov-2023.) |
Ref | Expression |
---|---|
harsucnn | β’ (π΄ β Ο β (harβπ΄) = suc π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7882 | . . 3 β’ (π΄ β Ο β π΄ β On) | |
2 | onenon 9980 | . . 3 β’ (π΄ β On β π΄ β dom card) | |
3 | harval2 10028 | . . 3 β’ (π΄ β dom card β (harβπ΄) = β© {π₯ β On β£ π΄ βΊ π₯}) | |
4 | 1, 2, 3 | 3syl 18 | . 2 β’ (π΄ β Ο β (harβπ΄) = β© {π₯ β On β£ π΄ βΊ π₯}) |
5 | sucdom 9266 | . . . . . 6 β’ (π΄ β Ο β (π΄ βΊ π₯ β suc π΄ βΌ π₯)) | |
6 | 5 | adantr 479 | . . . . 5 β’ ((π΄ β Ο β§ π₯ β On) β (π΄ βΊ π₯ β suc π΄ βΌ π₯)) |
7 | peano2 7902 | . . . . . 6 β’ (π΄ β Ο β suc π΄ β Ο) | |
8 | nndomog 9247 | . . . . . 6 β’ ((suc π΄ β Ο β§ π₯ β On) β (suc π΄ βΌ π₯ β suc π΄ β π₯)) | |
9 | 7, 8 | sylan 578 | . . . . 5 β’ ((π΄ β Ο β§ π₯ β On) β (suc π΄ βΌ π₯ β suc π΄ β π₯)) |
10 | 6, 9 | bitrd 278 | . . . 4 β’ ((π΄ β Ο β§ π₯ β On) β (π΄ βΊ π₯ β suc π΄ β π₯)) |
11 | 10 | rabbidva 3437 | . . 3 β’ (π΄ β Ο β {π₯ β On β£ π΄ βΊ π₯} = {π₯ β On β£ suc π΄ β π₯}) |
12 | 11 | inteqd 4958 | . 2 β’ (π΄ β Ο β β© {π₯ β On β£ π΄ βΊ π₯} = β© {π₯ β On β£ suc π΄ β π₯}) |
13 | nnon 7882 | . . 3 β’ (suc π΄ β Ο β suc π΄ β On) | |
14 | intmin 4975 | . . 3 β’ (suc π΄ β On β β© {π₯ β On β£ suc π΄ β π₯} = suc π΄) | |
15 | 7, 13, 14 | 3syl 18 | . 2 β’ (π΄ β Ο β β© {π₯ β On β£ suc π΄ β π₯} = suc π΄) |
16 | 4, 12, 15 | 3eqtrd 2772 | 1 β’ (π΄ β Ο β (harβπ΄) = suc π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 {crab 3430 β wss 3949 β© cint 4953 class class class wbr 5152 dom cdm 5682 Oncon0 6374 suc csuc 6376 βcfv 6553 Οcom 7876 βΌ cdom 8968 βΊ csdm 8969 harchar 9587 cardccrd 9966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-1o 8493 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-oi 9541 df-har 9588 df-card 9970 |
This theorem is referenced by: har2o 43007 |
Copyright terms: Public domain | W3C validator |