![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > harsucnn | Structured version Visualization version GIF version |
Description: The next cardinal after a finite ordinal is the successor ordinal. (Contributed by RP, 5-Nov-2023.) |
Ref | Expression |
---|---|
harsucnn | β’ (π΄ β Ο β (harβπ΄) = suc π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7858 | . . 3 β’ (π΄ β Ο β π΄ β On) | |
2 | onenon 9946 | . . 3 β’ (π΄ β On β π΄ β dom card) | |
3 | harval2 9994 | . . 3 β’ (π΄ β dom card β (harβπ΄) = β© {π₯ β On β£ π΄ βΊ π₯}) | |
4 | 1, 2, 3 | 3syl 18 | . 2 β’ (π΄ β Ο β (harβπ΄) = β© {π₯ β On β£ π΄ βΊ π₯}) |
5 | sucdom 9237 | . . . . . 6 β’ (π΄ β Ο β (π΄ βΊ π₯ β suc π΄ βΌ π₯)) | |
6 | 5 | adantr 480 | . . . . 5 β’ ((π΄ β Ο β§ π₯ β On) β (π΄ βΊ π₯ β suc π΄ βΌ π₯)) |
7 | peano2 7878 | . . . . . 6 β’ (π΄ β Ο β suc π΄ β Ο) | |
8 | nndomog 9218 | . . . . . 6 β’ ((suc π΄ β Ο β§ π₯ β On) β (suc π΄ βΌ π₯ β suc π΄ β π₯)) | |
9 | 7, 8 | sylan 579 | . . . . 5 β’ ((π΄ β Ο β§ π₯ β On) β (suc π΄ βΌ π₯ β suc π΄ β π₯)) |
10 | 6, 9 | bitrd 279 | . . . 4 β’ ((π΄ β Ο β§ π₯ β On) β (π΄ βΊ π₯ β suc π΄ β π₯)) |
11 | 10 | rabbidva 3433 | . . 3 β’ (π΄ β Ο β {π₯ β On β£ π΄ βΊ π₯} = {π₯ β On β£ suc π΄ β π₯}) |
12 | 11 | inteqd 4948 | . 2 β’ (π΄ β Ο β β© {π₯ β On β£ π΄ βΊ π₯} = β© {π₯ β On β£ suc π΄ β π₯}) |
13 | nnon 7858 | . . 3 β’ (suc π΄ β Ο β suc π΄ β On) | |
14 | intmin 4965 | . . 3 β’ (suc π΄ β On β β© {π₯ β On β£ suc π΄ β π₯} = suc π΄) | |
15 | 7, 13, 14 | 3syl 18 | . 2 β’ (π΄ β Ο β β© {π₯ β On β£ suc π΄ β π₯} = suc π΄) |
16 | 4, 12, 15 | 3eqtrd 2770 | 1 β’ (π΄ β Ο β (harβπ΄) = suc π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 {crab 3426 β wss 3943 β© cint 4943 class class class wbr 5141 dom cdm 5669 Oncon0 6358 suc csuc 6360 βcfv 6537 Οcom 7852 βΌ cdom 8939 βΊ csdm 8940 harchar 9553 cardccrd 9932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-oi 9507 df-har 9554 df-card 9936 |
This theorem is referenced by: har2o 42870 |
Copyright terms: Public domain | W3C validator |