![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > harsucnn | Structured version Visualization version GIF version |
Description: The next cardinal after a finite ordinal is the successor ordinal. (Contributed by RP, 5-Nov-2023.) |
Ref | Expression |
---|---|
harsucnn | β’ (π΄ β Ο β (harβπ΄) = suc π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7860 | . . 3 β’ (π΄ β Ο β π΄ β On) | |
2 | onenon 9943 | . . 3 β’ (π΄ β On β π΄ β dom card) | |
3 | harval2 9991 | . . 3 β’ (π΄ β dom card β (harβπ΄) = β© {π₯ β On β£ π΄ βΊ π₯}) | |
4 | 1, 2, 3 | 3syl 18 | . 2 β’ (π΄ β Ο β (harβπ΄) = β© {π₯ β On β£ π΄ βΊ π₯}) |
5 | sucdom 9234 | . . . . . 6 β’ (π΄ β Ο β (π΄ βΊ π₯ β suc π΄ βΌ π₯)) | |
6 | 5 | adantr 481 | . . . . 5 β’ ((π΄ β Ο β§ π₯ β On) β (π΄ βΊ π₯ β suc π΄ βΌ π₯)) |
7 | peano2 7880 | . . . . . 6 β’ (π΄ β Ο β suc π΄ β Ο) | |
8 | nndomog 9215 | . . . . . 6 β’ ((suc π΄ β Ο β§ π₯ β On) β (suc π΄ βΌ π₯ β suc π΄ β π₯)) | |
9 | 7, 8 | sylan 580 | . . . . 5 β’ ((π΄ β Ο β§ π₯ β On) β (suc π΄ βΌ π₯ β suc π΄ β π₯)) |
10 | 6, 9 | bitrd 278 | . . . 4 β’ ((π΄ β Ο β§ π₯ β On) β (π΄ βΊ π₯ β suc π΄ β π₯)) |
11 | 10 | rabbidva 3439 | . . 3 β’ (π΄ β Ο β {π₯ β On β£ π΄ βΊ π₯} = {π₯ β On β£ suc π΄ β π₯}) |
12 | 11 | inteqd 4955 | . 2 β’ (π΄ β Ο β β© {π₯ β On β£ π΄ βΊ π₯} = β© {π₯ β On β£ suc π΄ β π₯}) |
13 | nnon 7860 | . . 3 β’ (suc π΄ β Ο β suc π΄ β On) | |
14 | intmin 4972 | . . 3 β’ (suc π΄ β On β β© {π₯ β On β£ suc π΄ β π₯} = suc π΄) | |
15 | 7, 13, 14 | 3syl 18 | . 2 β’ (π΄ β Ο β β© {π₯ β On β£ suc π΄ β π₯} = suc π΄) |
16 | 4, 12, 15 | 3eqtrd 2776 | 1 β’ (π΄ β Ο β (harβπ΄) = suc π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 β wss 3948 β© cint 4950 class class class wbr 5148 dom cdm 5676 Oncon0 6364 suc csuc 6366 βcfv 6543 Οcom 7854 βΌ cdom 8936 βΊ csdm 8937 harchar 9550 cardccrd 9929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-oi 9504 df-har 9551 df-card 9933 |
This theorem is referenced by: har2o 42287 |
Copyright terms: Public domain | W3C validator |