![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > harsucnn | Structured version Visualization version GIF version |
Description: The next cardinal after a finite ordinal is the successor ordinal. (Contributed by RP, 5-Nov-2023.) |
Ref | Expression |
---|---|
harsucnn | ⊢ (𝐴 ∈ ω → (har‘𝐴) = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7880 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | onenon 9978 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | |
3 | harval2 10026 | . . 3 ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ω → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
5 | sucdom 9264 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝑥 ↔ suc 𝐴 ≼ 𝑥)) | |
6 | 5 | adantr 479 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ On) → (𝐴 ≺ 𝑥 ↔ suc 𝐴 ≼ 𝑥)) |
7 | peano2 7900 | . . . . . 6 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | |
8 | nndomog 9245 | . . . . . 6 ⊢ ((suc 𝐴 ∈ ω ∧ 𝑥 ∈ On) → (suc 𝐴 ≼ 𝑥 ↔ suc 𝐴 ⊆ 𝑥)) | |
9 | 7, 8 | sylan 578 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ On) → (suc 𝐴 ≼ 𝑥 ↔ suc 𝐴 ⊆ 𝑥)) |
10 | 6, 9 | bitrd 278 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ On) → (𝐴 ≺ 𝑥 ↔ suc 𝐴 ⊆ 𝑥)) |
11 | 10 | rabbidva 3435 | . . 3 ⊢ (𝐴 ∈ ω → {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} = {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥}) |
12 | 11 | inteqd 4956 | . 2 ⊢ (𝐴 ∈ ω → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} = ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥}) |
13 | nnon 7880 | . . 3 ⊢ (suc 𝐴 ∈ ω → suc 𝐴 ∈ On) | |
14 | intmin 4973 | . . 3 ⊢ (suc 𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥} = suc 𝐴) | |
15 | 7, 13, 14 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ω → ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥} = suc 𝐴) |
16 | 4, 12, 15 | 3eqtrd 2771 | 1 ⊢ (𝐴 ∈ ω → (har‘𝐴) = suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3428 ⊆ wss 3947 ∩ cint 4951 class class class wbr 5150 dom cdm 5680 Oncon0 6372 suc csuc 6374 ‘cfv 6551 ωcom 7874 ≼ cdom 8966 ≺ csdm 8967 harchar 9585 cardccrd 9964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-om 7875 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-1o 8491 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-oi 9539 df-har 9586 df-card 9968 |
This theorem is referenced by: har2o 42979 |
Copyright terms: Public domain | W3C validator |