MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harsucnn Structured version   Visualization version   GIF version

Theorem harsucnn 9503
Description: The next cardinal after a finite ordinal is the successor ordinal. (Contributed by RP, 5-Nov-2023.)
Assertion
Ref Expression
harsucnn (𝐴 ∈ ω → (har‘𝐴) = suc 𝐴)

Proof of Theorem harsucnn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnon 7608 . . 3 (𝐴 ∈ ω → 𝐴 ∈ On)
2 onenon 9454 . . 3 (𝐴 ∈ On → 𝐴 ∈ dom card)
3 harval2 9502 . . 3 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ On ∣ 𝐴𝑥})
41, 2, 33syl 18 . 2 (𝐴 ∈ ω → (har‘𝐴) = {𝑥 ∈ On ∣ 𝐴𝑥})
5 sucdom 8797 . . . . . 6 (𝐴 ∈ ω → (𝐴𝑥 ↔ suc 𝐴𝑥))
65adantr 484 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ suc 𝐴𝑥))
7 peano2 7624 . . . . . 6 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
8 nndomog 8761 . . . . . 6 ((suc 𝐴 ∈ ω ∧ 𝑥 ∈ On) → (suc 𝐴𝑥 ↔ suc 𝐴𝑥))
97, 8sylan 583 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ On) → (suc 𝐴𝑥 ↔ suc 𝐴𝑥))
106, 9bitrd 282 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ suc 𝐴𝑥))
1110rabbidva 3380 . . 3 (𝐴 ∈ ω → {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ suc 𝐴𝑥})
1211inteqd 4842 . 2 (𝐴 ∈ ω → {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ suc 𝐴𝑥})
13 nnon 7608 . . 3 (suc 𝐴 ∈ ω → suc 𝐴 ∈ On)
14 intmin 4857 . . 3 (suc 𝐴 ∈ On → {𝑥 ∈ On ∣ suc 𝐴𝑥} = suc 𝐴)
157, 13, 143syl 18 . 2 (𝐴 ∈ ω → {𝑥 ∈ On ∣ suc 𝐴𝑥} = suc 𝐴)
164, 12, 153eqtrd 2778 1 (𝐴 ∈ ω → (har‘𝐴) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  {crab 3058  wss 3844   cint 4837   class class class wbr 5031  dom cdm 5526  Oncon0 6173  suc csuc 6175  cfv 6340  ωcom 7602  cdom 8556  csdm 8557  harchar 9096  cardccrd 9440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-om 7603  df-wrecs 7979  df-recs 8040  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-oi 9050  df-har 9097  df-card 9444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator