MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harsucnn Structured version   Visualization version   GIF version

Theorem harsucnn 9951
Description: The next cardinal after a finite ordinal is the successor ordinal. (Contributed by RP, 5-Nov-2023.)
Assertion
Ref Expression
harsucnn (𝐴 ∈ ω → (har‘𝐴) = suc 𝐴)

Proof of Theorem harsucnn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnon 7848 . . 3 (𝐴 ∈ ω → 𝐴 ∈ On)
2 onenon 9902 . . 3 (𝐴 ∈ On → 𝐴 ∈ dom card)
3 harval2 9950 . . 3 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ On ∣ 𝐴𝑥})
41, 2, 33syl 18 . 2 (𝐴 ∈ ω → (har‘𝐴) = {𝑥 ∈ On ∣ 𝐴𝑥})
5 sucdom 9183 . . . . . 6 (𝐴 ∈ ω → (𝐴𝑥 ↔ suc 𝐴𝑥))
65adantr 480 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ suc 𝐴𝑥))
7 peano2 7866 . . . . . 6 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
8 nndomog 9177 . . . . . 6 ((suc 𝐴 ∈ ω ∧ 𝑥 ∈ On) → (suc 𝐴𝑥 ↔ suc 𝐴𝑥))
97, 8sylan 580 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ On) → (suc 𝐴𝑥 ↔ suc 𝐴𝑥))
106, 9bitrd 279 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ suc 𝐴𝑥))
1110rabbidva 3412 . . 3 (𝐴 ∈ ω → {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ suc 𝐴𝑥})
1211inteqd 4915 . 2 (𝐴 ∈ ω → {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ suc 𝐴𝑥})
13 nnon 7848 . . 3 (suc 𝐴 ∈ ω → suc 𝐴 ∈ On)
14 intmin 4932 . . 3 (suc 𝐴 ∈ On → {𝑥 ∈ On ∣ suc 𝐴𝑥} = suc 𝐴)
157, 13, 143syl 18 . 2 (𝐴 ∈ ω → {𝑥 ∈ On ∣ suc 𝐴𝑥} = suc 𝐴)
164, 12, 153eqtrd 2768 1 (𝐴 ∈ ω → (har‘𝐴) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  wss 3914   cint 4910   class class class wbr 5107  dom cdm 5638  Oncon0 6332  suc csuc 6334  cfv 6511  ωcom 7842  cdom 8916  csdm 8917  harchar 9509  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-har 9510  df-card 9892
This theorem is referenced by:  har2o  43535
  Copyright terms: Public domain W3C validator