Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclidN Structured version   Visualization version   GIF version

Theorem pclidN 39857
Description: The projective subspace closure of a projective subspace is itself. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclid.s 𝑆 = (PSubSp‘𝐾)
pclid.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclidN ((𝐾𝑉𝑋𝑆) → (𝑈𝑋) = 𝑋)

Proof of Theorem pclidN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
2 pclid.s . . . 4 𝑆 = (PSubSp‘𝐾)
31, 2psubssat 39715 . . 3 ((𝐾𝑉𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
4 pclid.c . . . 4 𝑈 = (PCl‘𝐾)
51, 2, 4pclvalN 39851 . . 3 ((𝐾𝑉𝑋 ⊆ (Atoms‘𝐾)) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
63, 5syldan 591 . 2 ((𝐾𝑉𝑋𝑆) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
7 intmin 4948 . . 3 (𝑋𝑆 {𝑦𝑆𝑋𝑦} = 𝑋)
87adantl 481 . 2 ((𝐾𝑉𝑋𝑆) → {𝑦𝑆𝑋𝑦} = 𝑋)
96, 8eqtrd 2769 1 ((𝐾𝑉𝑋𝑆) → (𝑈𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3419  wss 3931   cint 4926  cfv 6541  Atomscatm 39223  PSubSpcpsubsp 39457  PClcpclN 39848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-psubsp 39464  df-pclN 39849
This theorem is referenced by:  pclbtwnN  39858  pclunN  39859  pclun2N  39860  pclfinN  39861  pclss2polN  39882  pclfinclN  39911
  Copyright terms: Public domain W3C validator