Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclidN | Structured version Visualization version GIF version |
Description: The projective subspace closure of a projective subspace is itself. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclid.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pclid.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclidN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → (𝑈‘𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
2 | pclid.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
3 | 1, 2 | psubssat 37695 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
4 | pclid.c | . . . 4 ⊢ 𝑈 = (PCl‘𝐾) | |
5 | 1, 2, 4 | pclvalN 37831 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ (Atoms‘𝐾)) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
6 | 3, 5 | syldan 590 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
7 | intmin 4896 | . . 3 ⊢ (𝑋 ∈ 𝑆 → ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} = 𝑋) | |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} = 𝑋) |
9 | 6, 8 | eqtrd 2778 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → (𝑈‘𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ∩ cint 4876 ‘cfv 6418 Atomscatm 37204 PSubSpcpsubsp 37437 PClcpclN 37828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-psubsp 37444 df-pclN 37829 |
This theorem is referenced by: pclbtwnN 37838 pclunN 37839 pclun2N 37840 pclfinN 37841 pclss2polN 37862 pclfinclN 37891 |
Copyright terms: Public domain | W3C validator |