MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddrid Structured version   Visualization version   GIF version

Theorem naddrid 8739
Description: Ordinal zero is the additive identity for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddrid (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)

Proof of Theorem naddrid
Dummy variables 𝑎 𝑏 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . 3 (𝑎 = 𝑏 → (𝑎 +no ∅) = (𝑏 +no ∅))
2 id 22 . . 3 (𝑎 = 𝑏𝑎 = 𝑏)
31, 2eqeq12d 2756 . 2 (𝑎 = 𝑏 → ((𝑎 +no ∅) = 𝑎 ↔ (𝑏 +no ∅) = 𝑏))
4 oveq1 7455 . . 3 (𝑎 = 𝐴 → (𝑎 +no ∅) = (𝐴 +no ∅))
5 id 22 . . 3 (𝑎 = 𝐴𝑎 = 𝐴)
64, 5eqeq12d 2756 . 2 (𝑎 = 𝐴 → ((𝑎 +no ∅) = 𝑎 ↔ (𝐴 +no ∅) = 𝐴))
7 0elon 6449 . . . . . 6 ∅ ∈ On
8 naddov2 8735 . . . . . 6 ((𝑎 ∈ On ∧ ∅ ∈ On) → (𝑎 +no ∅) = {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)})
97, 8mpan2 690 . . . . 5 (𝑎 ∈ On → (𝑎 +no ∅) = {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)})
109adantr 480 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (𝑎 +no ∅) = {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)})
11 ral0 4536 . . . . . . . 8 𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥
1211biantrur 530 . . . . . . 7 (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥))
13 eleq1 2832 . . . . . . . . . . 11 ((𝑏 +no ∅) = 𝑏 → ((𝑏 +no ∅) ∈ 𝑥𝑏𝑥))
1413ralimi 3089 . . . . . . . . . 10 (∀𝑏𝑎 (𝑏 +no ∅) = 𝑏 → ∀𝑏𝑎 ((𝑏 +no ∅) ∈ 𝑥𝑏𝑥))
15 ralbi 3109 . . . . . . . . . 10 (∀𝑏𝑎 ((𝑏 +no ∅) ∈ 𝑥𝑏𝑥) → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ ∀𝑏𝑎 𝑏𝑥))
1614, 15syl 17 . . . . . . . . 9 (∀𝑏𝑎 (𝑏 +no ∅) = 𝑏 → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ ∀𝑏𝑎 𝑏𝑥))
1716adantl 481 . . . . . . . 8 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ ∀𝑏𝑎 𝑏𝑥))
18 dfss3 3997 . . . . . . . 8 (𝑎𝑥 ↔ ∀𝑏𝑎 𝑏𝑥)
1917, 18bitr4di 289 . . . . . . 7 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥𝑎𝑥))
2012, 19bitr3id 285 . . . . . 6 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → ((∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥) ↔ 𝑎𝑥))
2120rabbidv 3451 . . . . 5 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)} = {𝑥 ∈ On ∣ 𝑎𝑥})
2221inteqd 4975 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)} = {𝑥 ∈ On ∣ 𝑎𝑥})
23 intmin 4992 . . . . 5 (𝑎 ∈ On → {𝑥 ∈ On ∣ 𝑎𝑥} = 𝑎)
2423adantr 480 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → {𝑥 ∈ On ∣ 𝑎𝑥} = 𝑎)
2510, 22, 243eqtrd 2784 . . 3 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (𝑎 +no ∅) = 𝑎)
2625ex 412 . 2 (𝑎 ∈ On → (∀𝑏𝑎 (𝑏 +no ∅) = 𝑏 → (𝑎 +no ∅) = 𝑎))
273, 6, 26tfis3 7895 1 (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976  c0 4352   cint 4970  Oncon0 6395  (class class class)co 7448   +no cnadd 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-nadd 8722
This theorem is referenced by:  naddlid  8740  naddword1  8747  naddoa  8758  addsproplem2  28021  mulsproplem2  28161  mulsproplem3  28162  mulsproplem4  28163  mulsproplem5  28164  mulsproplem6  28165  mulsproplem7  28166  mulsproplem8  28167  mulsproplem12  28171  mulsproplem13  28172  mulsproplem14  28173  nadd2rabex  43348  nadd1suc  43354  naddgeoa  43356  naddonnn  43357
  Copyright terms: Public domain W3C validator