MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddrid Structured version   Visualization version   GIF version

Theorem naddrid 8697
Description: Ordinal zero is the additive identity for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddrid (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)

Proof of Theorem naddrid
Dummy variables 𝑎 𝑏 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7421 . . 3 (𝑎 = 𝑏 → (𝑎 +no ∅) = (𝑏 +no ∅))
2 id 22 . . 3 (𝑎 = 𝑏𝑎 = 𝑏)
31, 2eqeq12d 2743 . 2 (𝑎 = 𝑏 → ((𝑎 +no ∅) = 𝑎 ↔ (𝑏 +no ∅) = 𝑏))
4 oveq1 7421 . . 3 (𝑎 = 𝐴 → (𝑎 +no ∅) = (𝐴 +no ∅))
5 id 22 . . 3 (𝑎 = 𝐴𝑎 = 𝐴)
64, 5eqeq12d 2743 . 2 (𝑎 = 𝐴 → ((𝑎 +no ∅) = 𝑎 ↔ (𝐴 +no ∅) = 𝐴))
7 0elon 6417 . . . . . 6 ∅ ∈ On
8 naddov2 8693 . . . . . 6 ((𝑎 ∈ On ∧ ∅ ∈ On) → (𝑎 +no ∅) = {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)})
97, 8mpan2 690 . . . . 5 (𝑎 ∈ On → (𝑎 +no ∅) = {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)})
109adantr 480 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (𝑎 +no ∅) = {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)})
11 ral0 4508 . . . . . . . 8 𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥
1211biantrur 530 . . . . . . 7 (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥))
13 eleq1 2816 . . . . . . . . . . 11 ((𝑏 +no ∅) = 𝑏 → ((𝑏 +no ∅) ∈ 𝑥𝑏𝑥))
1413ralimi 3078 . . . . . . . . . 10 (∀𝑏𝑎 (𝑏 +no ∅) = 𝑏 → ∀𝑏𝑎 ((𝑏 +no ∅) ∈ 𝑥𝑏𝑥))
15 ralbi 3098 . . . . . . . . . 10 (∀𝑏𝑎 ((𝑏 +no ∅) ∈ 𝑥𝑏𝑥) → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ ∀𝑏𝑎 𝑏𝑥))
1614, 15syl 17 . . . . . . . . 9 (∀𝑏𝑎 (𝑏 +no ∅) = 𝑏 → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ ∀𝑏𝑎 𝑏𝑥))
1716adantl 481 . . . . . . . 8 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ ∀𝑏𝑎 𝑏𝑥))
18 dfss3 3966 . . . . . . . 8 (𝑎𝑥 ↔ ∀𝑏𝑎 𝑏𝑥)
1917, 18bitr4di 289 . . . . . . 7 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥𝑎𝑥))
2012, 19bitr3id 285 . . . . . 6 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → ((∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥) ↔ 𝑎𝑥))
2120rabbidv 3435 . . . . 5 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)} = {𝑥 ∈ On ∣ 𝑎𝑥})
2221inteqd 4949 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)} = {𝑥 ∈ On ∣ 𝑎𝑥})
23 intmin 4966 . . . . 5 (𝑎 ∈ On → {𝑥 ∈ On ∣ 𝑎𝑥} = 𝑎)
2423adantr 480 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → {𝑥 ∈ On ∣ 𝑎𝑥} = 𝑎)
2510, 22, 243eqtrd 2771 . . 3 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (𝑎 +no ∅) = 𝑎)
2625ex 412 . 2 (𝑎 ∈ On → (∀𝑏𝑎 (𝑏 +no ∅) = 𝑏 → (𝑎 +no ∅) = 𝑎))
273, 6, 26tfis3 7856 1 (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3056  {crab 3427  wss 3944  c0 4318   cint 4944  Oncon0 6363  (class class class)co 7414   +no cnadd 8679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-frecs 8280  df-nadd 8680
This theorem is referenced by:  naddlid  8698  naddword1  8705  addsproplem2  27880  mulsproplem2  28010  mulsproplem3  28011  mulsproplem4  28012  mulsproplem5  28013  mulsproplem6  28014  mulsproplem7  28015  mulsproplem8  28016  mulsproplem12  28020  mulsproplem13  28021  mulsproplem14  28022  nadd2rabex  42787  nadd1suc  42793  naddgeoa  42796  naddonnn  42797
  Copyright terms: Public domain W3C validator