MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddrid Structured version   Visualization version   GIF version

Theorem naddrid 8607
Description: Ordinal zero is the additive identity for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddrid (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)

Proof of Theorem naddrid
Dummy variables 𝑎 𝑏 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7362 . . 3 (𝑎 = 𝑏 → (𝑎 +no ∅) = (𝑏 +no ∅))
2 id 22 . . 3 (𝑎 = 𝑏𝑎 = 𝑏)
31, 2eqeq12d 2749 . 2 (𝑎 = 𝑏 → ((𝑎 +no ∅) = 𝑎 ↔ (𝑏 +no ∅) = 𝑏))
4 oveq1 7362 . . 3 (𝑎 = 𝐴 → (𝑎 +no ∅) = (𝐴 +no ∅))
5 id 22 . . 3 (𝑎 = 𝐴𝑎 = 𝐴)
64, 5eqeq12d 2749 . 2 (𝑎 = 𝐴 → ((𝑎 +no ∅) = 𝑎 ↔ (𝐴 +no ∅) = 𝐴))
7 0elon 6369 . . . . . 6 ∅ ∈ On
8 naddov2 8603 . . . . . 6 ((𝑎 ∈ On ∧ ∅ ∈ On) → (𝑎 +no ∅) = {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)})
97, 8mpan2 691 . . . . 5 (𝑎 ∈ On → (𝑎 +no ∅) = {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)})
109adantr 480 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (𝑎 +no ∅) = {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)})
11 ral0 4448 . . . . . . . 8 𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥
1211biantrur 530 . . . . . . 7 (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥))
13 eleq1 2821 . . . . . . . . . . 11 ((𝑏 +no ∅) = 𝑏 → ((𝑏 +no ∅) ∈ 𝑥𝑏𝑥))
1413ralimi 3070 . . . . . . . . . 10 (∀𝑏𝑎 (𝑏 +no ∅) = 𝑏 → ∀𝑏𝑎 ((𝑏 +no ∅) ∈ 𝑥𝑏𝑥))
15 ralbi 3088 . . . . . . . . . 10 (∀𝑏𝑎 ((𝑏 +no ∅) ∈ 𝑥𝑏𝑥) → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ ∀𝑏𝑎 𝑏𝑥))
1614, 15syl 17 . . . . . . . . 9 (∀𝑏𝑎 (𝑏 +no ∅) = 𝑏 → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ ∀𝑏𝑎 𝑏𝑥))
1716adantl 481 . . . . . . . 8 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ ∀𝑏𝑎 𝑏𝑥))
18 dfss3 3919 . . . . . . . 8 (𝑎𝑥 ↔ ∀𝑏𝑎 𝑏𝑥)
1917, 18bitr4di 289 . . . . . . 7 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥𝑎𝑥))
2012, 19bitr3id 285 . . . . . 6 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → ((∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥) ↔ 𝑎𝑥))
2120rabbidv 3403 . . . . 5 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)} = {𝑥 ∈ On ∣ 𝑎𝑥})
2221inteqd 4904 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)} = {𝑥 ∈ On ∣ 𝑎𝑥})
23 intmin 4920 . . . . 5 (𝑎 ∈ On → {𝑥 ∈ On ∣ 𝑎𝑥} = 𝑎)
2423adantr 480 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → {𝑥 ∈ On ∣ 𝑎𝑥} = 𝑎)
2510, 22, 243eqtrd 2772 . . 3 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (𝑎 +no ∅) = 𝑎)
2625ex 412 . 2 (𝑎 ∈ On → (∀𝑏𝑎 (𝑏 +no ∅) = 𝑏 → (𝑎 +no ∅) = 𝑎))
273, 6, 26tfis3 7797 1 (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  wss 3898  c0 4282   cint 4899  Oncon0 6314  (class class class)co 7355   +no cnadd 8589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-frecs 8220  df-nadd 8590
This theorem is referenced by:  naddlid  8608  naddword1  8615  naddoa  8626  addsproplem2  27933  mulsproplem2  28076  mulsproplem3  28077  mulsproplem4  28078  mulsproplem5  28079  mulsproplem6  28080  mulsproplem7  28081  mulsproplem8  28082  mulsproplem12  28086  mulsproplem13  28087  mulsproplem14  28088  nadd2rabex  43543  nadd1suc  43549  naddgeoa  43551  naddonnn  43552
  Copyright terms: Public domain W3C validator