MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddrid Structured version   Visualization version   GIF version

Theorem naddrid 8695
Description: Ordinal zero is the additive identity for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddrid (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)

Proof of Theorem naddrid
Dummy variables 𝑎 𝑏 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7412 . . 3 (𝑎 = 𝑏 → (𝑎 +no ∅) = (𝑏 +no ∅))
2 id 22 . . 3 (𝑎 = 𝑏𝑎 = 𝑏)
31, 2eqeq12d 2751 . 2 (𝑎 = 𝑏 → ((𝑎 +no ∅) = 𝑎 ↔ (𝑏 +no ∅) = 𝑏))
4 oveq1 7412 . . 3 (𝑎 = 𝐴 → (𝑎 +no ∅) = (𝐴 +no ∅))
5 id 22 . . 3 (𝑎 = 𝐴𝑎 = 𝐴)
64, 5eqeq12d 2751 . 2 (𝑎 = 𝐴 → ((𝑎 +no ∅) = 𝑎 ↔ (𝐴 +no ∅) = 𝐴))
7 0elon 6407 . . . . . 6 ∅ ∈ On
8 naddov2 8691 . . . . . 6 ((𝑎 ∈ On ∧ ∅ ∈ On) → (𝑎 +no ∅) = {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)})
97, 8mpan2 691 . . . . 5 (𝑎 ∈ On → (𝑎 +no ∅) = {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)})
109adantr 480 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (𝑎 +no ∅) = {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)})
11 ral0 4488 . . . . . . . 8 𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥
1211biantrur 530 . . . . . . 7 (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥))
13 eleq1 2822 . . . . . . . . . . 11 ((𝑏 +no ∅) = 𝑏 → ((𝑏 +no ∅) ∈ 𝑥𝑏𝑥))
1413ralimi 3073 . . . . . . . . . 10 (∀𝑏𝑎 (𝑏 +no ∅) = 𝑏 → ∀𝑏𝑎 ((𝑏 +no ∅) ∈ 𝑥𝑏𝑥))
15 ralbi 3092 . . . . . . . . . 10 (∀𝑏𝑎 ((𝑏 +no ∅) ∈ 𝑥𝑏𝑥) → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ ∀𝑏𝑎 𝑏𝑥))
1614, 15syl 17 . . . . . . . . 9 (∀𝑏𝑎 (𝑏 +no ∅) = 𝑏 → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ ∀𝑏𝑎 𝑏𝑥))
1716adantl 481 . . . . . . . 8 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥 ↔ ∀𝑏𝑎 𝑏𝑥))
18 dfss3 3947 . . . . . . . 8 (𝑎𝑥 ↔ ∀𝑏𝑎 𝑏𝑥)
1917, 18bitr4di 289 . . . . . . 7 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥𝑎𝑥))
2012, 19bitr3id 285 . . . . . 6 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → ((∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥) ↔ 𝑎𝑥))
2120rabbidv 3423 . . . . 5 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)} = {𝑥 ∈ On ∣ 𝑎𝑥})
2221inteqd 4927 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → {𝑥 ∈ On ∣ (∀𝑐 ∈ ∅ (𝑎 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝑎 (𝑏 +no ∅) ∈ 𝑥)} = {𝑥 ∈ On ∣ 𝑎𝑥})
23 intmin 4944 . . . . 5 (𝑎 ∈ On → {𝑥 ∈ On ∣ 𝑎𝑥} = 𝑎)
2423adantr 480 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → {𝑥 ∈ On ∣ 𝑎𝑥} = 𝑎)
2510, 22, 243eqtrd 2774 . . 3 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no ∅) = 𝑏) → (𝑎 +no ∅) = 𝑎)
2625ex 412 . 2 (𝑎 ∈ On → (∀𝑏𝑎 (𝑏 +no ∅) = 𝑏 → (𝑎 +no ∅) = 𝑎))
273, 6, 26tfis3 7853 1 (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  wss 3926  c0 4308   cint 4922  Oncon0 6352  (class class class)co 7405   +no cnadd 8677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-frecs 8280  df-nadd 8678
This theorem is referenced by:  naddlid  8696  naddword1  8703  naddoa  8714  addsproplem2  27929  mulsproplem2  28072  mulsproplem3  28073  mulsproplem4  28074  mulsproplem5  28075  mulsproplem6  28076  mulsproplem7  28077  mulsproplem8  28078  mulsproplem12  28082  mulsproplem13  28083  mulsproplem14  28084  nadd2rabex  43410  nadd1suc  43416  naddgeoa  43418  naddonnn  43419
  Copyright terms: Public domain W3C validator