| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aspid | Structured version Visualization version GIF version | ||
| Description: The algebraic span of a subalgebra is itself. (spanid 31313 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| aspval.a | ⊢ 𝐴 = (AlgSpan‘𝑊) |
| aspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| aspval.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| aspid | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → (𝐴‘𝑆) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → 𝑊 ∈ AssAlg) | |
| 2 | aspval.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | 2 | subrgss 20545 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ 𝑉) |
| 4 | 3 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → 𝑆 ⊆ 𝑉) |
| 5 | aspval.a | . . . 4 ⊢ 𝐴 = (AlgSpan‘𝑊) | |
| 6 | aspval.l | . . . 4 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 7 | 5, 2, 6 | aspval 21860 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡}) |
| 8 | 1, 4, 7 | syl2anc 584 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → (𝐴‘𝑆) = ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡}) |
| 9 | 3simpc 1150 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → (𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿)) | |
| 10 | elin 3949 | . . . 4 ⊢ (𝑆 ∈ ((SubRing‘𝑊) ∩ 𝐿) ↔ (𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿)) | |
| 11 | 9, 10 | sylibr 234 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → 𝑆 ∈ ((SubRing‘𝑊) ∩ 𝐿)) |
| 12 | intmin 4950 | . . 3 ⊢ (𝑆 ∈ ((SubRing‘𝑊) ∩ 𝐿) → ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} = 𝑆) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} = 𝑆) |
| 14 | 8, 13 | eqtrd 2769 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → (𝐴‘𝑆) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {crab 3420 ∩ cin 3932 ⊆ wss 3933 ∩ cint 4928 ‘cfv 6542 Basecbs 17230 SubRingcsubrg 20542 LSubSpclss 20902 AssAlgcasa 21837 AlgSpancasp 21838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-mgp 20111 df-ur 20152 df-ring 20205 df-subrg 20543 df-lmod 20833 df-lss 20903 df-assa 21840 df-asp 21841 |
| This theorem is referenced by: mplbas2 22027 mplind 22061 |
| Copyright terms: Public domain | W3C validator |