| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aspid | Structured version Visualization version GIF version | ||
| Description: The algebraic span of a subalgebra is itself. (spanid 31334 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| aspval.a | ⊢ 𝐴 = (AlgSpan‘𝑊) |
| aspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| aspval.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| aspid | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → (𝐴‘𝑆) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → 𝑊 ∈ AssAlg) | |
| 2 | aspval.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | 2 | subrgss 20493 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ 𝑉) |
| 4 | 3 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → 𝑆 ⊆ 𝑉) |
| 5 | aspval.a | . . . 4 ⊢ 𝐴 = (AlgSpan‘𝑊) | |
| 6 | aspval.l | . . . 4 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 7 | 5, 2, 6 | aspval 21816 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡}) |
| 8 | 1, 4, 7 | syl2anc 584 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → (𝐴‘𝑆) = ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡}) |
| 9 | 3simpc 1150 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → (𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿)) | |
| 10 | elin 3913 | . . . 4 ⊢ (𝑆 ∈ ((SubRing‘𝑊) ∩ 𝐿) ↔ (𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿)) | |
| 11 | 9, 10 | sylibr 234 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → 𝑆 ∈ ((SubRing‘𝑊) ∩ 𝐿)) |
| 12 | intmin 4918 | . . 3 ⊢ (𝑆 ∈ ((SubRing‘𝑊) ∩ 𝐿) → ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} = 𝑆) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} = 𝑆) |
| 14 | 8, 13 | eqtrd 2766 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → (𝐴‘𝑆) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 ∩ cin 3896 ⊆ wss 3897 ∩ cint 4897 ‘cfv 6487 Basecbs 17126 SubRingcsubrg 20490 LSubSpclss 20870 AssAlgcasa 21793 AlgSpancasp 21794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-grp 18855 df-mgp 20065 df-ur 20106 df-ring 20159 df-subrg 20491 df-lmod 20801 df-lss 20871 df-assa 21796 df-asp 21797 |
| This theorem is referenced by: mplbas2 21983 mplind 22011 |
| Copyright terms: Public domain | W3C validator |