![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcid | Structured version Visualization version GIF version |
Description: The closure of a closed set is itself. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcid | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝐶) → (𝐹‘𝑈) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mress 16639 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝐶) → 𝑈 ⊆ 𝑋) | |
2 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
3 | 2 | mrcval 16656 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
4 | 1, 3 | syldan 585 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝐶) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
5 | intmin 4730 | . . 3 ⊢ (𝑈 ∈ 𝐶 → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} = 𝑈) | |
6 | 5 | adantl 475 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝐶) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} = 𝑈) |
7 | 4, 6 | eqtrd 2814 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝐶) → (𝐹‘𝑈) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 {crab 3094 ⊆ wss 3792 ∩ cint 4710 ‘cfv 6135 Moorecmre 16628 mrClscmrc 16629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-int 4711 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-mre 16632 df-mrc 16633 |
This theorem is referenced by: mrcidb 16661 mrcidm 16665 mrcsscl 16666 isacs4lem 17554 dprdsn 18822 isnacs3 38233 |
Copyright terms: Public domain | W3C validator |