MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcid Structured version   Visualization version   GIF version

Theorem mrcid 17561
Description: The closure of a closed set is itself. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrClsβ€˜πΆ)
Assertion
Ref Expression
mrcid ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐢) β†’ (πΉβ€˜π‘ˆ) = π‘ˆ)

Proof of Theorem mrcid
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 mress 17541 . . 3 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐢) β†’ π‘ˆ βŠ† 𝑋)
2 mrcfval.f . . . 4 𝐹 = (mrClsβ€˜πΆ)
32mrcval 17558 . . 3 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘ˆ βŠ† 𝑋) β†’ (πΉβ€˜π‘ˆ) = ∩ {𝑠 ∈ 𝐢 ∣ π‘ˆ βŠ† 𝑠})
41, 3syldan 589 . 2 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐢) β†’ (πΉβ€˜π‘ˆ) = ∩ {𝑠 ∈ 𝐢 ∣ π‘ˆ βŠ† 𝑠})
5 intmin 4971 . . 3 (π‘ˆ ∈ 𝐢 β†’ ∩ {𝑠 ∈ 𝐢 ∣ π‘ˆ βŠ† 𝑠} = π‘ˆ)
65adantl 480 . 2 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐢) β†’ ∩ {𝑠 ∈ 𝐢 ∣ π‘ˆ βŠ† 𝑠} = π‘ˆ)
74, 6eqtrd 2770 1 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐢) β†’ (πΉβ€˜π‘ˆ) = π‘ˆ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  {crab 3430   βŠ† wss 3947  βˆ© cint 4949  β€˜cfv 6542  Moorecmre 17530  mrClscmrc 17531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-mre 17534  df-mrc 17535
This theorem is referenced by:  mrcidb  17563  mrcidm  17567  mrcsscl  17568  isacs4lem  18501  dprdsn  19947  isnacs3  41750
  Copyright terms: Public domain W3C validator