MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldcls Structured version   Visualization version   GIF version

Theorem cldcls 22897
Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
cldcls (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)

Proof of Theorem cldcls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cldrcl 22881 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 eqid 2726 . . . 4 𝐽 = 𝐽
32cldss 22884 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
42clsval 22892 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
51, 3, 4syl2anc 583 . 2 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
6 intmin 4965 . 2 (𝑆 ∈ (Clsd‘𝐽) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} = 𝑆)
75, 6eqtrd 2766 1 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {crab 3426  wss 3943   cuni 4902   cint 4943  cfv 6536  Topctop 22746  Clsdccld 22871  clsccl 22873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-top 22747  df-cld 22874  df-cls 22876
This theorem is referenced by:  iscld3  22919  clstop  22924  clsss2  22927  cls0  22935  cncls2  23128  lmcld  23158  fclscmp  23885  metnrmlem1a  24725  lebnumlem1  24838  cmetss  25195  minveclem4  25311  hauseqcn  33408  restcls2  47801
  Copyright terms: Public domain W3C validator