Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cldcls | Structured version Visualization version GIF version |
Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.) |
Ref | Expression |
---|---|
cldcls | ⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 22177 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | eqid 2738 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | 2 | cldss 22180 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ ∪ 𝐽) |
4 | 2 | clsval 22188 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
5 | 1, 3, 4 | syl2anc 584 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
6 | intmin 4899 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} = 𝑆) | |
7 | 5, 6 | eqtrd 2778 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ∪ cuni 4839 ∩ cint 4879 ‘cfv 6433 Topctop 22042 Clsdccld 22167 clsccl 22169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-top 22043 df-cld 22170 df-cls 22172 |
This theorem is referenced by: iscld3 22215 clstop 22220 clsss2 22223 cls0 22231 cncls2 22424 lmcld 22454 fclscmp 23181 metnrmlem1a 24021 lebnumlem1 24124 cmetss 24480 minveclem4 24596 hauseqcn 31848 restcls2 46207 |
Copyright terms: Public domain | W3C validator |