MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldcls Structured version   Visualization version   GIF version

Theorem cldcls 22950
Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
cldcls (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)

Proof of Theorem cldcls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cldrcl 22934 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 eqid 2730 . . . 4 𝐽 = 𝐽
32cldss 22937 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
42clsval 22945 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
51, 3, 4syl2anc 584 . 2 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
6 intmin 4916 . 2 (𝑆 ∈ (Clsd‘𝐽) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} = 𝑆)
75, 6eqtrd 2765 1 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  {crab 3393  wss 3900   cuni 4857   cint 4895  cfv 6477  Topctop 22801  Clsdccld 22924  clsccl 22926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-top 22802  df-cld 22927  df-cls 22929
This theorem is referenced by:  iscld3  22972  clstop  22977  clsss2  22980  cls0  22988  cncls2  23181  lmcld  23211  fclscmp  23938  metnrmlem1a  24767  lebnumlem1  24880  cmetss  25236  minveclem4  25352  hauseqcn  33901  restcls2  48924
  Copyright terms: Public domain W3C validator