MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldcls Structured version   Visualization version   GIF version

Theorem cldcls 22299
Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
cldcls (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)

Proof of Theorem cldcls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cldrcl 22283 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 eqid 2737 . . . 4 𝐽 = 𝐽
32cldss 22286 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
42clsval 22294 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
51, 3, 4syl2anc 585 . 2 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
6 intmin 4921 . 2 (𝑆 ∈ (Clsd‘𝐽) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} = 𝑆)
75, 6eqtrd 2777 1 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  {crab 3404  wss 3902   cuni 4857   cint 4899  cfv 6484  Topctop 22148  Clsdccld 22273  clsccl 22275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-top 22149  df-cld 22276  df-cls 22278
This theorem is referenced by:  iscld3  22321  clstop  22326  clsss2  22329  cls0  22337  cncls2  22530  lmcld  22560  fclscmp  23287  metnrmlem1a  24127  lebnumlem1  24230  cmetss  24586  minveclem4  24702  hauseqcn  32144  restcls2  46623
  Copyright terms: Public domain W3C validator