![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > spanid | Structured version Visualization version GIF version |
Description: A subspace of Hilbert space is its own span. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spanid | ⊢ (𝐴 ∈ Sℋ → (span‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shss 30326 | . . 3 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ) | |
2 | spanval 30449 | . . 3 ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ Sℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
4 | intmin 4965 | . 2 ⊢ (𝐴 ∈ Sℋ → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} = 𝐴) | |
5 | 3, 4 | eqtrd 2771 | 1 ⊢ (𝐴 ∈ Sℋ → (span‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3431 ⊆ wss 3944 ∩ cint 4943 ‘cfv 6532 ℋchba 30035 Sℋ csh 30044 spancspn 30048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-1cn 11150 ax-addcl 11152 ax-hilex 30115 ax-hfvadd 30116 ax-hv0cl 30119 ax-hfvmul 30121 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-map 8805 df-nn 12195 df-hlim 30088 df-sh 30323 df-ch 30337 df-span 30425 |
This theorem is referenced by: spanssoc 30465 shs0i 30565 spansn0 30657 span0 30658 spanuni 30660 spansnpji 30694 spanunsni 30695 spansnji 30762 shatomistici 31477 |
Copyright terms: Public domain | W3C validator |