HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanid Structured version   Visualization version   GIF version

Theorem spanid 28762
Description: A subspace of Hilbert space is its own span. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
spanid (𝐴S → (span‘𝐴) = 𝐴)

Proof of Theorem spanid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 shss 28623 . . 3 (𝐴S𝐴 ⊆ ℋ)
2 spanval 28748 . . 3 (𝐴 ⊆ ℋ → (span‘𝐴) = {𝑥S𝐴𝑥})
31, 2syl 17 . 2 (𝐴S → (span‘𝐴) = {𝑥S𝐴𝑥})
4 intmin 4718 . 2 (𝐴S {𝑥S𝐴𝑥} = 𝐴)
53, 4eqtrd 2862 1 (𝐴S → (span‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  {crab 3122  wss 3799   cint 4698  cfv 6124  chba 28332   S csh 28341  spancspn 28345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-1cn 10311  ax-addcl 10313  ax-hilex 28412  ax-hfvadd 28413  ax-hv0cl 28416  ax-hfvmul 28418
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-map 8125  df-nn 11352  df-hlim 28385  df-sh 28620  df-ch 28634  df-span 28724
This theorem is referenced by:  spanssoc  28764  shs0i  28864  spansn0  28956  span0  28957  spanuni  28959  spansnpji  28993  spanunsni  28994  spansnji  29061  shatomistici  29776
  Copyright terms: Public domain W3C validator