Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocioodisjd Structured version   Visualization version   GIF version

Theorem iocioodisjd 42293
Description: Adjacent intervals where the lower interval is right-closed and the upper interval is open are disjoint. (Contributed by SN, 1-Oct-2025.)
Hypotheses
Ref Expression
ixxdisjd.a (𝜑𝐴 ∈ ℝ*)
ixxdisjd.b (𝜑𝐵 ∈ ℝ*)
ixxdisjd.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
iocioodisjd (𝜑 → ((𝐴(,]𝐵) ∩ (𝐵(,)𝐶)) = ∅)

Proof of Theorem iocioodisjd
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixxdisjd.a . 2 (𝜑𝐴 ∈ ℝ*)
2 ixxdisjd.b . 2 (𝜑𝐵 ∈ ℝ*)
3 ixxdisjd.c . 2 (𝜑𝐶 ∈ ℝ*)
4 df-ioc 13271 . . 3 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
5 df-ioo 13270 . . 3 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
6 xrltnle 11201 . . 3 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵 < 𝑤 ↔ ¬ 𝑤𝐵))
74, 5, 6ixxdisj 13281 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐵) ∩ (𝐵(,)𝐶)) = ∅)
81, 2, 3, 7syl3anc 1373 1 (𝜑 → ((𝐴(,]𝐵) ∩ (𝐵(,)𝐶)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3904  c0 4286  (class class class)co 7353  *cxr 11167   < clt 11168  cle 11169  (,)cioo 13266  (,]cioc 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-xr 11172  df-le 11174  df-ioo 13270  df-ioc 13271
This theorem is referenced by:  readvrec2  42334  readvrec  42335
  Copyright terms: Public domain W3C validator