| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iocioodisjd | Structured version Visualization version GIF version | ||
| Description: Adjacent intervals where the lower interval is right-closed and the upper interval is open are disjoint. (Contributed by SN, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| ixxdisjd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| ixxdisjd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| ixxdisjd.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| iocioodisjd | ⊢ (𝜑 → ((𝐴(,]𝐵) ∩ (𝐵(,)𝐶)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixxdisjd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | ixxdisjd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | ixxdisjd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 4 | df-ioc 13242 | . . 3 ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 5 | df-ioo 13241 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 6 | xrltnle 11171 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐵 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐵)) | |
| 7 | 4, 5, 6 | ixxdisj 13252 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴(,]𝐵) ∩ (𝐵(,)𝐶)) = ∅) |
| 8 | 1, 2, 3, 7 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴(,]𝐵) ∩ (𝐵(,)𝐶)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ∩ cin 3899 ∅c0 4281 (class class class)co 7341 ℝ*cxr 11137 < clt 11138 ≤ cle 11139 (,)cioo 13237 (,]cioc 13238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-xr 11142 df-le 11144 df-ioo 13241 df-ioc 13242 |
| This theorem is referenced by: readvrec2 42373 readvrec 42374 |
| Copyright terms: Public domain | W3C validator |