| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iocioodisjd | Structured version Visualization version GIF version | ||
| Description: Adjacent intervals where the lower interval is right-closed and the upper interval is open are disjoint. (Contributed by SN, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| ixxdisjd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| ixxdisjd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| ixxdisjd.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| iocioodisjd | ⊢ (𝜑 → ((𝐴(,]𝐵) ∩ (𝐵(,)𝐶)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixxdisjd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | ixxdisjd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | ixxdisjd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 4 | df-ioc 13367 | . . 3 ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 5 | df-ioo 13366 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 6 | xrltnle 11302 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐵 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐵)) | |
| 7 | 4, 5, 6 | ixxdisj 13377 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴(,]𝐵) ∩ (𝐵(,)𝐶)) = ∅) |
| 8 | 1, 2, 3, 7 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴(,]𝐵) ∩ (𝐵(,)𝐶)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ∅c0 4308 (class class class)co 7405 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 (,)cioo 13362 (,]cioc 13363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-xr 11273 df-le 11275 df-ioo 13366 df-ioc 13367 |
| This theorem is referenced by: readvrec2 42404 readvrec 42405 |
| Copyright terms: Public domain | W3C validator |