Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readvrec Structured version   Visualization version   GIF version

Theorem readvrec 42454
Description: For real numbers, the antiderivative of 1/x is ln|x|. (Contributed by SN, 30-Sep-2025.)
Hypothesis
Ref Expression
redvabs.d 𝐷 = (ℝ ∖ {0})
Assertion
Ref Expression
readvrec (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ (1 / 𝑥))
Distinct variable group:   𝑥,𝐷

Proof of Theorem readvrec
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reelprrecn 11098 . . . . 5 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
3 cnelprrecn 11099 . . . . 5 ℂ ∈ {ℝ, ℂ}
43a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
5 dfrp2 13294 . . . . . . 7 + = (0(,)+∞)
6 mnfxr 11169 . . . . . . . . . . . 12 -∞ ∈ ℝ*
76a1i 11 . . . . . . . . . . 11 (⊤ → -∞ ∈ ℝ*)
8 0xr 11159 . . . . . . . . . . . 12 0 ∈ ℝ*
98a1i 11 . . . . . . . . . . 11 (⊤ → 0 ∈ ℝ*)
10 pnfxr 11166 . . . . . . . . . . . 12 +∞ ∈ ℝ*
1110a1i 11 . . . . . . . . . . 11 (⊤ → +∞ ∈ ℝ*)
127, 9, 11iocioodisjd 42412 . . . . . . . . . 10 (⊤ → ((-∞(,]0) ∩ (0(,)+∞)) = ∅)
1312mptru 1548 . . . . . . . . 9 ((-∞(,]0) ∩ (0(,)+∞)) = ∅
1413ineqcomi 4158 . . . . . . . 8 ((0(,)+∞) ∩ (-∞(,]0)) = ∅
15 disjdif2 4427 . . . . . . . 8 (((0(,)+∞) ∩ (-∞(,]0)) = ∅ → ((0(,)+∞) ∖ (-∞(,]0)) = (0(,)+∞))
1614, 15ax-mp 5 . . . . . . 7 ((0(,)+∞) ∖ (-∞(,]0)) = (0(,)+∞)
175, 16eqtr4i 2757 . . . . . 6 + = ((0(,)+∞) ∖ (-∞(,]0))
18 ioosscn 13308 . . . . . . 7 (0(,)+∞) ⊆ ℂ
19 ssdif 4091 . . . . . . 7 ((0(,)+∞) ⊆ ℂ → ((0(,)+∞) ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0)))
2018, 19ax-mp 5 . . . . . 6 ((0(,)+∞) ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0))
2117, 20eqsstri 3976 . . . . 5 + ⊆ (ℂ ∖ (-∞(,]0))
22 redvabs.d . . . . . . . . . . 11 𝐷 = (ℝ ∖ {0})
2322eleq2i 2823 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ (ℝ ∖ {0}))
24 eldifsn 4735 . . . . . . . . . 10 (𝑥 ∈ (ℝ ∖ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
2523, 24bitri 275 . . . . . . . . 9 (𝑥𝐷 ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
2625simplbi 497 . . . . . . . 8 (𝑥𝐷𝑥 ∈ ℝ)
2726recnd 11140 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
2827adantl 481 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
2925simprbi 496 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
3029adantl 481 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → 𝑥 ≠ 0)
3128, 30absrpcld 15358 . . . . 5 ((⊤ ∧ 𝑥𝐷) → (abs‘𝑥) ∈ ℝ+)
3221, 31sselid 3927 . . . 4 ((⊤ ∧ 𝑥𝐷) → (abs‘𝑥) ∈ (ℂ ∖ (-∞(,]0)))
33 negex 11358 . . . . . 6 -1 ∈ V
34 1ex 11108 . . . . . 6 1 ∈ V
3533, 34ifex 4523 . . . . 5 if(𝑥 < 0, -1, 1) ∈ V
3635a1i 11 . . . 4 ((⊤ ∧ 𝑥𝐷) → if(𝑥 < 0, -1, 1) ∈ V)
37 eldifi 4078 . . . . . 6 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ∈ ℂ)
3837adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ∈ ℂ)
39 eldifn 4079 . . . . . . 7 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝑦 ∈ (-∞(,]0))
40 mnflt0 13024 . . . . . . . . . 10 -∞ < 0
41 ubioc1 13299 . . . . . . . . . 10 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -∞ < 0) → 0 ∈ (-∞(,]0))
426, 8, 40, 41mp3an 1463 . . . . . . . . 9 0 ∈ (-∞(,]0)
43 eleq1 2819 . . . . . . . . 9 (𝑦 = 0 → (𝑦 ∈ (-∞(,]0) ↔ 0 ∈ (-∞(,]0)))
4442, 43mpbiri 258 . . . . . . . 8 (𝑦 = 0 → 𝑦 ∈ (-∞(,]0))
4544necon3bi 2954 . . . . . . 7 𝑦 ∈ (-∞(,]0) → 𝑦 ≠ 0)
4639, 45syl 17 . . . . . 6 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ≠ 0)
4746adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ≠ 0)
4838, 47logcld 26506 . . . 4 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (log‘𝑦) ∈ ℂ)
49 ovexd 7381 . . . 4 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (1 / 𝑦) ∈ V)
5022redvmptabs 42452 . . . . 5 (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1))
5150a1i 11 . . . 4 (⊤ → (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1)))
52 logf1o 26500 . . . . . . . . . 10 log:(ℂ ∖ {0})–1-1-onto→ran log
53 f1of 6763 . . . . . . . . . 10 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
5452, 53mp1i 13 . . . . . . . . 9 (⊤ → log:(ℂ ∖ {0})⟶ran log)
55 eqid 2731 . . . . . . . . . . 11 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
5655logdmss 26578 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})
5756a1i 11 . . . . . . . . 9 (⊤ → (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}))
5854, 57feqresmpt 6891 . . . . . . . 8 (⊤ → (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)))
5958mptru 1548 . . . . . . 7 (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))
6059oveq2i 7357 . . . . . 6 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)))
6155dvlog 26587 . . . . . 6 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
6260, 61eqtr3i 2756 . . . . 5 (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
6362a1i 11 . . . 4 (⊤ → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦)))
64 fveq2 6822 . . . 4 (𝑦 = (abs‘𝑥) → (log‘𝑦) = (log‘(abs‘𝑥)))
65 oveq2 7354 . . . 4 (𝑦 = (abs‘𝑥) → (1 / 𝑦) = (1 / (abs‘𝑥)))
662, 4, 32, 36, 48, 49, 51, 63, 64, 65dvmptco 25903 . . 3 (⊤ → (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1))))
6766mptru 1548 . 2 (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1)))
68 ovif2 7445 . . . 4 ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1)) = if(𝑥 < 0, ((1 / (abs‘𝑥)) · -1), ((1 / (abs‘𝑥)) · 1))
69 simpll 766 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ∈ ℝ)
7069recnd 11140 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ∈ ℂ)
7170abscld 15346 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) ∈ ℝ)
7271recnd 11140 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) ∈ ℂ)
73 simplr 768 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ≠ 0)
7470, 73absne0d 15357 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) ≠ 0)
7572, 74reccld 11890 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (1 / (abs‘𝑥)) ∈ ℂ)
76 neg1cn 12110 . . . . . . . . 9 -1 ∈ ℂ
7776a1i 11 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -1 ∈ ℂ)
7875, 77mulcomd 11133 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → ((1 / (abs‘𝑥)) · -1) = (-1 · (1 / (abs‘𝑥))))
7975mulm1d 11569 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (-1 · (1 / (abs‘𝑥))) = -(1 / (abs‘𝑥)))
80 1cnd 11107 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 1 ∈ ℂ)
8180, 72, 74divneg2d 11911 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -(1 / (abs‘𝑥)) = (1 / -(abs‘𝑥)))
82 0red 11115 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 0 ∈ ℝ)
83 simpr 484 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 < 0)
8469, 82, 83ltled 11261 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ≤ 0)
8569, 84absnidd 15321 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) = -𝑥)
8685eqcomd 2737 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -𝑥 = (abs‘𝑥))
8770, 86negcon1ad 11467 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -(abs‘𝑥) = 𝑥)
8887oveq2d 7362 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (1 / -(abs‘𝑥)) = (1 / 𝑥))
8981, 88eqtrd 2766 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -(1 / (abs‘𝑥)) = (1 / 𝑥))
9078, 79, 893eqtrd 2770 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → ((1 / (abs‘𝑥)) · -1) = (1 / 𝑥))
9125, 90sylanb 581 . . . . 5 ((𝑥𝐷𝑥 < 0) → ((1 / (abs‘𝑥)) · -1) = (1 / 𝑥))
92 recn 11096 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
9392abscld 15346 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
9493ad2antrr 726 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (abs‘𝑥) ∈ ℝ)
9592ad2antrr 726 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 𝑥 ∈ ℂ)
96 simplr 768 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 𝑥 ≠ 0)
9795, 96absne0d 15357 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (abs‘𝑥) ≠ 0)
9894, 97rereccld 11948 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (1 / (abs‘𝑥)) ∈ ℝ)
9998recnd 11140 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (1 / (abs‘𝑥)) ∈ ℂ)
10099mulridd 11129 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → ((1 / (abs‘𝑥)) · 1) = (1 / (abs‘𝑥)))
101 simpll 766 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 𝑥 ∈ ℝ)
102 0red 11115 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → 0 ∈ ℝ)
103 simpl 482 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℝ)
104102, 103lenltd 11259 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → (0 ≤ 𝑥 ↔ ¬ 𝑥 < 0))
105104biimpar 477 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 0 ≤ 𝑥)
106101, 105absidd 15330 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (abs‘𝑥) = 𝑥)
107106oveq2d 7362 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (1 / (abs‘𝑥)) = (1 / 𝑥))
108100, 107eqtrd 2766 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → ((1 / (abs‘𝑥)) · 1) = (1 / 𝑥))
10925, 108sylanb 581 . . . . 5 ((𝑥𝐷 ∧ ¬ 𝑥 < 0) → ((1 / (abs‘𝑥)) · 1) = (1 / 𝑥))
11091, 109ifeqda 4509 . . . 4 (𝑥𝐷 → if(𝑥 < 0, ((1 / (abs‘𝑥)) · -1), ((1 / (abs‘𝑥)) · 1)) = (1 / 𝑥))
11168, 110eqtrid 2778 . . 3 (𝑥𝐷 → ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1)) = (1 / 𝑥))
112111mpteq2ia 5184 . 2 (𝑥𝐷 ↦ ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1))) = (𝑥𝐷 ↦ (1 / 𝑥))
11367, 112eqtri 2754 1 (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wtru 1542  wcel 2111  wne 2928  Vcvv 3436  cdif 3894  cin 3896  wss 3897  c0 4280  ifcif 4472  {csn 4573  {cpr 4575   class class class wbr 5089  cmpt 5170  ran crn 5615  cres 5616  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  -cneg 11345   / cdiv 11774  +crp 12890  (,)cioo 13245  (,]cioc 13246  abscabs 15141   D cdv 25791  logclog 26490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492
This theorem is referenced by:  readvcot  42456
  Copyright terms: Public domain W3C validator