Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readvrec Structured version   Visualization version   GIF version

Theorem readvrec 42345
Description: For real numbers, the antiderivative of 1/x is ln|x|. (Contributed by SN, 30-Sep-2025.)
Hypothesis
Ref Expression
redvabs.d 𝐷 = (ℝ ∖ {0})
Assertion
Ref Expression
readvrec (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ (1 / 𝑥))
Distinct variable group:   𝑥,𝐷

Proof of Theorem readvrec
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reelprrecn 11101 . . . . 5 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
3 cnelprrecn 11102 . . . . 5 ℂ ∈ {ℝ, ℂ}
43a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
5 dfrp2 13297 . . . . . . 7 + = (0(,)+∞)
6 mnfxr 11172 . . . . . . . . . . . 12 -∞ ∈ ℝ*
76a1i 11 . . . . . . . . . . 11 (⊤ → -∞ ∈ ℝ*)
8 0xr 11162 . . . . . . . . . . . 12 0 ∈ ℝ*
98a1i 11 . . . . . . . . . . 11 (⊤ → 0 ∈ ℝ*)
10 pnfxr 11169 . . . . . . . . . . . 12 +∞ ∈ ℝ*
1110a1i 11 . . . . . . . . . . 11 (⊤ → +∞ ∈ ℝ*)
127, 9, 11iocioodisjd 42303 . . . . . . . . . 10 (⊤ → ((-∞(,]0) ∩ (0(,)+∞)) = ∅)
1312mptru 1547 . . . . . . . . 9 ((-∞(,]0) ∩ (0(,)+∞)) = ∅
1413ineqcomi 4162 . . . . . . . 8 ((0(,)+∞) ∩ (-∞(,]0)) = ∅
15 disjdif2 4431 . . . . . . . 8 (((0(,)+∞) ∩ (-∞(,]0)) = ∅ → ((0(,)+∞) ∖ (-∞(,]0)) = (0(,)+∞))
1614, 15ax-mp 5 . . . . . . 7 ((0(,)+∞) ∖ (-∞(,]0)) = (0(,)+∞)
175, 16eqtr4i 2755 . . . . . 6 + = ((0(,)+∞) ∖ (-∞(,]0))
18 ioosscn 13311 . . . . . . 7 (0(,)+∞) ⊆ ℂ
19 ssdif 4095 . . . . . . 7 ((0(,)+∞) ⊆ ℂ → ((0(,)+∞) ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0)))
2018, 19ax-mp 5 . . . . . 6 ((0(,)+∞) ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0))
2117, 20eqsstri 3982 . . . . 5 + ⊆ (ℂ ∖ (-∞(,]0))
22 redvabs.d . . . . . . . . . . 11 𝐷 = (ℝ ∖ {0})
2322eleq2i 2820 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ (ℝ ∖ {0}))
24 eldifsn 4737 . . . . . . . . . 10 (𝑥 ∈ (ℝ ∖ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
2523, 24bitri 275 . . . . . . . . 9 (𝑥𝐷 ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
2625simplbi 497 . . . . . . . 8 (𝑥𝐷𝑥 ∈ ℝ)
2726recnd 11143 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
2827adantl 481 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
2925simprbi 496 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
3029adantl 481 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → 𝑥 ≠ 0)
3128, 30absrpcld 15358 . . . . 5 ((⊤ ∧ 𝑥𝐷) → (abs‘𝑥) ∈ ℝ+)
3221, 31sselid 3933 . . . 4 ((⊤ ∧ 𝑥𝐷) → (abs‘𝑥) ∈ (ℂ ∖ (-∞(,]0)))
33 negex 11361 . . . . . 6 -1 ∈ V
34 1ex 11111 . . . . . 6 1 ∈ V
3533, 34ifex 4527 . . . . 5 if(𝑥 < 0, -1, 1) ∈ V
3635a1i 11 . . . 4 ((⊤ ∧ 𝑥𝐷) → if(𝑥 < 0, -1, 1) ∈ V)
37 eldifi 4082 . . . . . 6 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ∈ ℂ)
3837adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ∈ ℂ)
39 eldifn 4083 . . . . . . 7 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝑦 ∈ (-∞(,]0))
40 mnflt0 13027 . . . . . . . . . 10 -∞ < 0
41 ubioc1 13302 . . . . . . . . . 10 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -∞ < 0) → 0 ∈ (-∞(,]0))
426, 8, 40, 41mp3an 1463 . . . . . . . . 9 0 ∈ (-∞(,]0)
43 eleq1 2816 . . . . . . . . 9 (𝑦 = 0 → (𝑦 ∈ (-∞(,]0) ↔ 0 ∈ (-∞(,]0)))
4442, 43mpbiri 258 . . . . . . . 8 (𝑦 = 0 → 𝑦 ∈ (-∞(,]0))
4544necon3bi 2951 . . . . . . 7 𝑦 ∈ (-∞(,]0) → 𝑦 ≠ 0)
4639, 45syl 17 . . . . . 6 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ≠ 0)
4746adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ≠ 0)
4838, 47logcld 26477 . . . 4 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (log‘𝑦) ∈ ℂ)
49 ovexd 7384 . . . 4 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (1 / 𝑦) ∈ V)
5022redvmptabs 42343 . . . . 5 (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1))
5150a1i 11 . . . 4 (⊤ → (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1)))
52 logf1o 26471 . . . . . . . . . 10 log:(ℂ ∖ {0})–1-1-onto→ran log
53 f1of 6764 . . . . . . . . . 10 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
5452, 53mp1i 13 . . . . . . . . 9 (⊤ → log:(ℂ ∖ {0})⟶ran log)
55 eqid 2729 . . . . . . . . . . 11 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
5655logdmss 26549 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})
5756a1i 11 . . . . . . . . 9 (⊤ → (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}))
5854, 57feqresmpt 6892 . . . . . . . 8 (⊤ → (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)))
5958mptru 1547 . . . . . . 7 (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))
6059oveq2i 7360 . . . . . 6 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)))
6155dvlog 26558 . . . . . 6 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
6260, 61eqtr3i 2754 . . . . 5 (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
6362a1i 11 . . . 4 (⊤ → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦)))
64 fveq2 6822 . . . 4 (𝑦 = (abs‘𝑥) → (log‘𝑦) = (log‘(abs‘𝑥)))
65 oveq2 7357 . . . 4 (𝑦 = (abs‘𝑥) → (1 / 𝑦) = (1 / (abs‘𝑥)))
662, 4, 32, 36, 48, 49, 51, 63, 64, 65dvmptco 25874 . . 3 (⊤ → (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1))))
6766mptru 1547 . 2 (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1)))
68 ovif2 7448 . . . 4 ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1)) = if(𝑥 < 0, ((1 / (abs‘𝑥)) · -1), ((1 / (abs‘𝑥)) · 1))
69 simpll 766 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ∈ ℝ)
7069recnd 11143 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ∈ ℂ)
7170abscld 15346 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) ∈ ℝ)
7271recnd 11143 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) ∈ ℂ)
73 simplr 768 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ≠ 0)
7470, 73absne0d 15357 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) ≠ 0)
7572, 74reccld 11893 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (1 / (abs‘𝑥)) ∈ ℂ)
76 neg1cn 12113 . . . . . . . . 9 -1 ∈ ℂ
7776a1i 11 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -1 ∈ ℂ)
7875, 77mulcomd 11136 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → ((1 / (abs‘𝑥)) · -1) = (-1 · (1 / (abs‘𝑥))))
7975mulm1d 11572 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (-1 · (1 / (abs‘𝑥))) = -(1 / (abs‘𝑥)))
80 1cnd 11110 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 1 ∈ ℂ)
8180, 72, 74divneg2d 11914 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -(1 / (abs‘𝑥)) = (1 / -(abs‘𝑥)))
82 0red 11118 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 0 ∈ ℝ)
83 simpr 484 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 < 0)
8469, 82, 83ltled 11264 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ≤ 0)
8569, 84absnidd 15321 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) = -𝑥)
8685eqcomd 2735 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -𝑥 = (abs‘𝑥))
8770, 86negcon1ad 11470 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -(abs‘𝑥) = 𝑥)
8887oveq2d 7365 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (1 / -(abs‘𝑥)) = (1 / 𝑥))
8981, 88eqtrd 2764 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -(1 / (abs‘𝑥)) = (1 / 𝑥))
9078, 79, 893eqtrd 2768 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → ((1 / (abs‘𝑥)) · -1) = (1 / 𝑥))
9125, 90sylanb 581 . . . . 5 ((𝑥𝐷𝑥 < 0) → ((1 / (abs‘𝑥)) · -1) = (1 / 𝑥))
92 recn 11099 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
9392abscld 15346 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
9493ad2antrr 726 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (abs‘𝑥) ∈ ℝ)
9592ad2antrr 726 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 𝑥 ∈ ℂ)
96 simplr 768 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 𝑥 ≠ 0)
9795, 96absne0d 15357 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (abs‘𝑥) ≠ 0)
9894, 97rereccld 11951 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (1 / (abs‘𝑥)) ∈ ℝ)
9998recnd 11143 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (1 / (abs‘𝑥)) ∈ ℂ)
10099mulridd 11132 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → ((1 / (abs‘𝑥)) · 1) = (1 / (abs‘𝑥)))
101 simpll 766 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 𝑥 ∈ ℝ)
102 0red 11118 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → 0 ∈ ℝ)
103 simpl 482 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℝ)
104102, 103lenltd 11262 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → (0 ≤ 𝑥 ↔ ¬ 𝑥 < 0))
105104biimpar 477 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 0 ≤ 𝑥)
106101, 105absidd 15330 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (abs‘𝑥) = 𝑥)
107106oveq2d 7365 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (1 / (abs‘𝑥)) = (1 / 𝑥))
108100, 107eqtrd 2764 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → ((1 / (abs‘𝑥)) · 1) = (1 / 𝑥))
10925, 108sylanb 581 . . . . 5 ((𝑥𝐷 ∧ ¬ 𝑥 < 0) → ((1 / (abs‘𝑥)) · 1) = (1 / 𝑥))
11091, 109ifeqda 4513 . . . 4 (𝑥𝐷 → if(𝑥 < 0, ((1 / (abs‘𝑥)) · -1), ((1 / (abs‘𝑥)) · 1)) = (1 / 𝑥))
11168, 110eqtrid 2776 . . 3 (𝑥𝐷 → ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1)) = (1 / 𝑥))
112111mpteq2ia 5187 . 2 (𝑥𝐷 ↦ ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1))) = (𝑥𝐷 ↦ (1 / 𝑥))
11367, 112eqtri 2752 1 (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  Vcvv 3436  cdif 3900  cin 3902  wss 3903  c0 4284  ifcif 4476  {csn 4577  {cpr 4579   class class class wbr 5092  cmpt 5173  ran crn 5620  cres 5621  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  -cneg 11348   / cdiv 11777  +crp 12893  (,)cioo 13248  (,]cioc 13249  abscabs 15141   D cdv 25762  logclog 26461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463
This theorem is referenced by:  readvcot  42347
  Copyright terms: Public domain W3C validator