Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readvrec Structured version   Visualization version   GIF version

Theorem readvrec 42392
Description: For real numbers, the antiderivative of 1/x is ln|x|. (Contributed by SN, 30-Sep-2025.)
Hypothesis
Ref Expression
redvabs.d 𝐷 = (ℝ ∖ {0})
Assertion
Ref Expression
readvrec (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ (1 / 𝑥))
Distinct variable group:   𝑥,𝐷

Proof of Theorem readvrec
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reelprrecn 11247 . . . . 5 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
3 cnelprrecn 11248 . . . . 5 ℂ ∈ {ℝ, ℂ}
43a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
5 dfrp2 13436 . . . . . . 7 + = (0(,)+∞)
6 mnfxr 11318 . . . . . . . . . . . 12 -∞ ∈ ℝ*
76a1i 11 . . . . . . . . . . 11 (⊤ → -∞ ∈ ℝ*)
8 0xr 11308 . . . . . . . . . . . 12 0 ∈ ℝ*
98a1i 11 . . . . . . . . . . 11 (⊤ → 0 ∈ ℝ*)
10 pnfxr 11315 . . . . . . . . . . . 12 +∞ ∈ ℝ*
1110a1i 11 . . . . . . . . . . 11 (⊤ → +∞ ∈ ℝ*)
127, 9, 11iocioodisjd 42355 . . . . . . . . . 10 (⊤ → ((-∞(,]0) ∩ (0(,)+∞)) = ∅)
1312mptru 1547 . . . . . . . . 9 ((-∞(,]0) ∩ (0(,)+∞)) = ∅
1413ineqcomi 4211 . . . . . . . 8 ((0(,)+∞) ∩ (-∞(,]0)) = ∅
15 disjdif2 4480 . . . . . . . 8 (((0(,)+∞) ∩ (-∞(,]0)) = ∅ → ((0(,)+∞) ∖ (-∞(,]0)) = (0(,)+∞))
1614, 15ax-mp 5 . . . . . . 7 ((0(,)+∞) ∖ (-∞(,]0)) = (0(,)+∞)
175, 16eqtr4i 2768 . . . . . 6 + = ((0(,)+∞) ∖ (-∞(,]0))
18 ioosscn 13449 . . . . . . 7 (0(,)+∞) ⊆ ℂ
19 ssdif 4144 . . . . . . 7 ((0(,)+∞) ⊆ ℂ → ((0(,)+∞) ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0)))
2018, 19ax-mp 5 . . . . . 6 ((0(,)+∞) ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0))
2117, 20eqsstri 4030 . . . . 5 + ⊆ (ℂ ∖ (-∞(,]0))
22 redvabs.d . . . . . . . . . . 11 𝐷 = (ℝ ∖ {0})
2322eleq2i 2833 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ (ℝ ∖ {0}))
24 eldifsn 4786 . . . . . . . . . 10 (𝑥 ∈ (ℝ ∖ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
2523, 24bitri 275 . . . . . . . . 9 (𝑥𝐷 ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
2625simplbi 497 . . . . . . . 8 (𝑥𝐷𝑥 ∈ ℝ)
2726recnd 11289 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
2827adantl 481 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
2925simprbi 496 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
3029adantl 481 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → 𝑥 ≠ 0)
3128, 30absrpcld 15487 . . . . 5 ((⊤ ∧ 𝑥𝐷) → (abs‘𝑥) ∈ ℝ+)
3221, 31sselid 3981 . . . 4 ((⊤ ∧ 𝑥𝐷) → (abs‘𝑥) ∈ (ℂ ∖ (-∞(,]0)))
33 negex 11506 . . . . . 6 -1 ∈ V
34 1ex 11257 . . . . . 6 1 ∈ V
3533, 34ifex 4576 . . . . 5 if(𝑥 < 0, -1, 1) ∈ V
3635a1i 11 . . . 4 ((⊤ ∧ 𝑥𝐷) → if(𝑥 < 0, -1, 1) ∈ V)
37 eldifi 4131 . . . . . 6 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ∈ ℂ)
3837adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ∈ ℂ)
39 eldifn 4132 . . . . . . 7 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝑦 ∈ (-∞(,]0))
40 mnflt0 13167 . . . . . . . . . 10 -∞ < 0
41 ubioc1 13440 . . . . . . . . . 10 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -∞ < 0) → 0 ∈ (-∞(,]0))
426, 8, 40, 41mp3an 1463 . . . . . . . . 9 0 ∈ (-∞(,]0)
43 eleq1 2829 . . . . . . . . 9 (𝑦 = 0 → (𝑦 ∈ (-∞(,]0) ↔ 0 ∈ (-∞(,]0)))
4442, 43mpbiri 258 . . . . . . . 8 (𝑦 = 0 → 𝑦 ∈ (-∞(,]0))
4544necon3bi 2967 . . . . . . 7 𝑦 ∈ (-∞(,]0) → 𝑦 ≠ 0)
4639, 45syl 17 . . . . . 6 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ≠ 0)
4746adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ≠ 0)
4838, 47logcld 26612 . . . 4 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (log‘𝑦) ∈ ℂ)
49 ovexd 7466 . . . 4 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (1 / 𝑦) ∈ V)
5022redvmptabs 42390 . . . . 5 (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1))
5150a1i 11 . . . 4 (⊤ → (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1)))
52 logf1o 26606 . . . . . . . . . 10 log:(ℂ ∖ {0})–1-1-onto→ran log
53 f1of 6848 . . . . . . . . . 10 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
5452, 53mp1i 13 . . . . . . . . 9 (⊤ → log:(ℂ ∖ {0})⟶ran log)
55 eqid 2737 . . . . . . . . . . 11 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
5655logdmss 26684 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})
5756a1i 11 . . . . . . . . 9 (⊤ → (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}))
5854, 57feqresmpt 6978 . . . . . . . 8 (⊤ → (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)))
5958mptru 1547 . . . . . . 7 (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))
6059oveq2i 7442 . . . . . 6 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)))
6155dvlog 26693 . . . . . 6 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
6260, 61eqtr3i 2767 . . . . 5 (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
6362a1i 11 . . . 4 (⊤ → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦)))
64 fveq2 6906 . . . 4 (𝑦 = (abs‘𝑥) → (log‘𝑦) = (log‘(abs‘𝑥)))
65 oveq2 7439 . . . 4 (𝑦 = (abs‘𝑥) → (1 / 𝑦) = (1 / (abs‘𝑥)))
662, 4, 32, 36, 48, 49, 51, 63, 64, 65dvmptco 26010 . . 3 (⊤ → (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1))))
6766mptru 1547 . 2 (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1)))
68 ovif2 7532 . . . 4 ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1)) = if(𝑥 < 0, ((1 / (abs‘𝑥)) · -1), ((1 / (abs‘𝑥)) · 1))
69 simpll 767 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ∈ ℝ)
7069recnd 11289 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ∈ ℂ)
7170abscld 15475 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) ∈ ℝ)
7271recnd 11289 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) ∈ ℂ)
73 simplr 769 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ≠ 0)
7470, 73absne0d 15486 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) ≠ 0)
7572, 74reccld 12036 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (1 / (abs‘𝑥)) ∈ ℂ)
76 neg1cn 12380 . . . . . . . . 9 -1 ∈ ℂ
7776a1i 11 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -1 ∈ ℂ)
7875, 77mulcomd 11282 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → ((1 / (abs‘𝑥)) · -1) = (-1 · (1 / (abs‘𝑥))))
7975mulm1d 11715 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (-1 · (1 / (abs‘𝑥))) = -(1 / (abs‘𝑥)))
80 1cnd 11256 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 1 ∈ ℂ)
8180, 72, 74divneg2d 12057 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -(1 / (abs‘𝑥)) = (1 / -(abs‘𝑥)))
82 0red 11264 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 0 ∈ ℝ)
83 simpr 484 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 < 0)
8469, 82, 83ltled 11409 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ≤ 0)
8569, 84absnidd 15452 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) = -𝑥)
8685eqcomd 2743 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -𝑥 = (abs‘𝑥))
8770, 86negcon1ad 11615 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -(abs‘𝑥) = 𝑥)
8887oveq2d 7447 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (1 / -(abs‘𝑥)) = (1 / 𝑥))
8981, 88eqtrd 2777 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -(1 / (abs‘𝑥)) = (1 / 𝑥))
9078, 79, 893eqtrd 2781 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → ((1 / (abs‘𝑥)) · -1) = (1 / 𝑥))
9125, 90sylanb 581 . . . . 5 ((𝑥𝐷𝑥 < 0) → ((1 / (abs‘𝑥)) · -1) = (1 / 𝑥))
92 recn 11245 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
9392abscld 15475 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
9493ad2antrr 726 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (abs‘𝑥) ∈ ℝ)
9592ad2antrr 726 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 𝑥 ∈ ℂ)
96 simplr 769 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 𝑥 ≠ 0)
9795, 96absne0d 15486 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (abs‘𝑥) ≠ 0)
9894, 97rereccld 12094 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (1 / (abs‘𝑥)) ∈ ℝ)
9998recnd 11289 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (1 / (abs‘𝑥)) ∈ ℂ)
10099mulridd 11278 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → ((1 / (abs‘𝑥)) · 1) = (1 / (abs‘𝑥)))
101 simpll 767 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 𝑥 ∈ ℝ)
102 0red 11264 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → 0 ∈ ℝ)
103 simpl 482 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℝ)
104102, 103lenltd 11407 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → (0 ≤ 𝑥 ↔ ¬ 𝑥 < 0))
105104biimpar 477 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 0 ≤ 𝑥)
106101, 105absidd 15461 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (abs‘𝑥) = 𝑥)
107106oveq2d 7447 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (1 / (abs‘𝑥)) = (1 / 𝑥))
108100, 107eqtrd 2777 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → ((1 / (abs‘𝑥)) · 1) = (1 / 𝑥))
10925, 108sylanb 581 . . . . 5 ((𝑥𝐷 ∧ ¬ 𝑥 < 0) → ((1 / (abs‘𝑥)) · 1) = (1 / 𝑥))
11091, 109ifeqda 4562 . . . 4 (𝑥𝐷 → if(𝑥 < 0, ((1 / (abs‘𝑥)) · -1), ((1 / (abs‘𝑥)) · 1)) = (1 / 𝑥))
11168, 110eqtrid 2789 . . 3 (𝑥𝐷 → ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1)) = (1 / 𝑥))
112111mpteq2ia 5245 . 2 (𝑥𝐷 ↦ ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1))) = (𝑥𝐷 ↦ (1 / 𝑥))
11367, 112eqtri 2765 1 (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2940  Vcvv 3480  cdif 3948  cin 3950  wss 3951  c0 4333  ifcif 4525  {csn 4626  {cpr 4628   class class class wbr 5143  cmpt 5225  ran crn 5686  cres 5687  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  -cneg 11493   / cdiv 11920  +crp 13034  (,)cioo 13387  (,]cioc 13388  abscabs 15273   D cdv 25898  logclog 26596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598
This theorem is referenced by:  readvcot  42394
  Copyright terms: Public domain W3C validator