Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readvrec Structured version   Visualization version   GIF version

Theorem readvrec 42352
Description: For real numbers, the antiderivative of 1/x is ln|x|. (Contributed by SN, 30-Sep-2025.)
Hypothesis
Ref Expression
redvabs.d 𝐷 = (ℝ ∖ {0})
Assertion
Ref Expression
readvrec (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ (1 / 𝑥))
Distinct variable group:   𝑥,𝐷

Proof of Theorem readvrec
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reelprrecn 11219 . . . . 5 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
3 cnelprrecn 11220 . . . . 5 ℂ ∈ {ℝ, ℂ}
43a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
5 dfrp2 13409 . . . . . . 7 + = (0(,)+∞)
6 mnfxr 11290 . . . . . . . . . . . 12 -∞ ∈ ℝ*
76a1i 11 . . . . . . . . . . 11 (⊤ → -∞ ∈ ℝ*)
8 0xr 11280 . . . . . . . . . . . 12 0 ∈ ℝ*
98a1i 11 . . . . . . . . . . 11 (⊤ → 0 ∈ ℝ*)
10 pnfxr 11287 . . . . . . . . . . . 12 +∞ ∈ ℝ*
1110a1i 11 . . . . . . . . . . 11 (⊤ → +∞ ∈ ℝ*)
127, 9, 11iocioodisjd 42316 . . . . . . . . . 10 (⊤ → ((-∞(,]0) ∩ (0(,)+∞)) = ∅)
1312mptru 1547 . . . . . . . . 9 ((-∞(,]0) ∩ (0(,)+∞)) = ∅
1413ineqcomi 4186 . . . . . . . 8 ((0(,)+∞) ∩ (-∞(,]0)) = ∅
15 disjdif2 4455 . . . . . . . 8 (((0(,)+∞) ∩ (-∞(,]0)) = ∅ → ((0(,)+∞) ∖ (-∞(,]0)) = (0(,)+∞))
1614, 15ax-mp 5 . . . . . . 7 ((0(,)+∞) ∖ (-∞(,]0)) = (0(,)+∞)
175, 16eqtr4i 2761 . . . . . 6 + = ((0(,)+∞) ∖ (-∞(,]0))
18 ioosscn 13423 . . . . . . 7 (0(,)+∞) ⊆ ℂ
19 ssdif 4119 . . . . . . 7 ((0(,)+∞) ⊆ ℂ → ((0(,)+∞) ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0)))
2018, 19ax-mp 5 . . . . . 6 ((0(,)+∞) ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0))
2117, 20eqsstri 4005 . . . . 5 + ⊆ (ℂ ∖ (-∞(,]0))
22 redvabs.d . . . . . . . . . . 11 𝐷 = (ℝ ∖ {0})
2322eleq2i 2826 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ (ℝ ∖ {0}))
24 eldifsn 4762 . . . . . . . . . 10 (𝑥 ∈ (ℝ ∖ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
2523, 24bitri 275 . . . . . . . . 9 (𝑥𝐷 ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
2625simplbi 497 . . . . . . . 8 (𝑥𝐷𝑥 ∈ ℝ)
2726recnd 11261 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
2827adantl 481 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
2925simprbi 496 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
3029adantl 481 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → 𝑥 ≠ 0)
3128, 30absrpcld 15465 . . . . 5 ((⊤ ∧ 𝑥𝐷) → (abs‘𝑥) ∈ ℝ+)
3221, 31sselid 3956 . . . 4 ((⊤ ∧ 𝑥𝐷) → (abs‘𝑥) ∈ (ℂ ∖ (-∞(,]0)))
33 negex 11478 . . . . . 6 -1 ∈ V
34 1ex 11229 . . . . . 6 1 ∈ V
3533, 34ifex 4551 . . . . 5 if(𝑥 < 0, -1, 1) ∈ V
3635a1i 11 . . . 4 ((⊤ ∧ 𝑥𝐷) → if(𝑥 < 0, -1, 1) ∈ V)
37 eldifi 4106 . . . . . 6 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ∈ ℂ)
3837adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ∈ ℂ)
39 eldifn 4107 . . . . . . 7 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝑦 ∈ (-∞(,]0))
40 mnflt0 13139 . . . . . . . . . 10 -∞ < 0
41 ubioc1 13414 . . . . . . . . . 10 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -∞ < 0) → 0 ∈ (-∞(,]0))
426, 8, 40, 41mp3an 1463 . . . . . . . . 9 0 ∈ (-∞(,]0)
43 eleq1 2822 . . . . . . . . 9 (𝑦 = 0 → (𝑦 ∈ (-∞(,]0) ↔ 0 ∈ (-∞(,]0)))
4442, 43mpbiri 258 . . . . . . . 8 (𝑦 = 0 → 𝑦 ∈ (-∞(,]0))
4544necon3bi 2958 . . . . . . 7 𝑦 ∈ (-∞(,]0) → 𝑦 ≠ 0)
4639, 45syl 17 . . . . . 6 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ≠ 0)
4746adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ≠ 0)
4838, 47logcld 26529 . . . 4 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (log‘𝑦) ∈ ℂ)
49 ovexd 7438 . . . 4 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (1 / 𝑦) ∈ V)
5022redvmptabs 42350 . . . . 5 (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1))
5150a1i 11 . . . 4 (⊤ → (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1)))
52 logf1o 26523 . . . . . . . . . 10 log:(ℂ ∖ {0})–1-1-onto→ran log
53 f1of 6817 . . . . . . . . . 10 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
5452, 53mp1i 13 . . . . . . . . 9 (⊤ → log:(ℂ ∖ {0})⟶ran log)
55 eqid 2735 . . . . . . . . . . 11 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
5655logdmss 26601 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})
5756a1i 11 . . . . . . . . 9 (⊤ → (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}))
5854, 57feqresmpt 6947 . . . . . . . 8 (⊤ → (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)))
5958mptru 1547 . . . . . . 7 (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))
6059oveq2i 7414 . . . . . 6 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)))
6155dvlog 26610 . . . . . 6 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
6260, 61eqtr3i 2760 . . . . 5 (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
6362a1i 11 . . . 4 (⊤ → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦)))
64 fveq2 6875 . . . 4 (𝑦 = (abs‘𝑥) → (log‘𝑦) = (log‘(abs‘𝑥)))
65 oveq2 7411 . . . 4 (𝑦 = (abs‘𝑥) → (1 / 𝑦) = (1 / (abs‘𝑥)))
662, 4, 32, 36, 48, 49, 51, 63, 64, 65dvmptco 25926 . . 3 (⊤ → (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1))))
6766mptru 1547 . 2 (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1)))
68 ovif2 7504 . . . 4 ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1)) = if(𝑥 < 0, ((1 / (abs‘𝑥)) · -1), ((1 / (abs‘𝑥)) · 1))
69 simpll 766 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ∈ ℝ)
7069recnd 11261 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ∈ ℂ)
7170abscld 15453 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) ∈ ℝ)
7271recnd 11261 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) ∈ ℂ)
73 simplr 768 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ≠ 0)
7470, 73absne0d 15464 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) ≠ 0)
7572, 74reccld 12008 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (1 / (abs‘𝑥)) ∈ ℂ)
76 neg1cn 12352 . . . . . . . . 9 -1 ∈ ℂ
7776a1i 11 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -1 ∈ ℂ)
7875, 77mulcomd 11254 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → ((1 / (abs‘𝑥)) · -1) = (-1 · (1 / (abs‘𝑥))))
7975mulm1d 11687 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (-1 · (1 / (abs‘𝑥))) = -(1 / (abs‘𝑥)))
80 1cnd 11228 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 1 ∈ ℂ)
8180, 72, 74divneg2d 12029 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -(1 / (abs‘𝑥)) = (1 / -(abs‘𝑥)))
82 0red 11236 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 0 ∈ ℝ)
83 simpr 484 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 < 0)
8469, 82, 83ltled 11381 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → 𝑥 ≤ 0)
8569, 84absnidd 15430 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (abs‘𝑥) = -𝑥)
8685eqcomd 2741 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -𝑥 = (abs‘𝑥))
8770, 86negcon1ad 11587 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -(abs‘𝑥) = 𝑥)
8887oveq2d 7419 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → (1 / -(abs‘𝑥)) = (1 / 𝑥))
8981, 88eqtrd 2770 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → -(1 / (abs‘𝑥)) = (1 / 𝑥))
9078, 79, 893eqtrd 2774 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) → ((1 / (abs‘𝑥)) · -1) = (1 / 𝑥))
9125, 90sylanb 581 . . . . 5 ((𝑥𝐷𝑥 < 0) → ((1 / (abs‘𝑥)) · -1) = (1 / 𝑥))
92 recn 11217 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
9392abscld 15453 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
9493ad2antrr 726 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (abs‘𝑥) ∈ ℝ)
9592ad2antrr 726 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 𝑥 ∈ ℂ)
96 simplr 768 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 𝑥 ≠ 0)
9795, 96absne0d 15464 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (abs‘𝑥) ≠ 0)
9894, 97rereccld 12066 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (1 / (abs‘𝑥)) ∈ ℝ)
9998recnd 11261 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (1 / (abs‘𝑥)) ∈ ℂ)
10099mulridd 11250 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → ((1 / (abs‘𝑥)) · 1) = (1 / (abs‘𝑥)))
101 simpll 766 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 𝑥 ∈ ℝ)
102 0red 11236 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → 0 ∈ ℝ)
103 simpl 482 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℝ)
104102, 103lenltd 11379 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → (0 ≤ 𝑥 ↔ ¬ 𝑥 < 0))
105104biimpar 477 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → 0 ≤ 𝑥)
106101, 105absidd 15439 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (abs‘𝑥) = 𝑥)
107106oveq2d 7419 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → (1 / (abs‘𝑥)) = (1 / 𝑥))
108100, 107eqtrd 2770 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) → ((1 / (abs‘𝑥)) · 1) = (1 / 𝑥))
10925, 108sylanb 581 . . . . 5 ((𝑥𝐷 ∧ ¬ 𝑥 < 0) → ((1 / (abs‘𝑥)) · 1) = (1 / 𝑥))
11091, 109ifeqda 4537 . . . 4 (𝑥𝐷 → if(𝑥 < 0, ((1 / (abs‘𝑥)) · -1), ((1 / (abs‘𝑥)) · 1)) = (1 / 𝑥))
11168, 110eqtrid 2782 . . 3 (𝑥𝐷 → ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1)) = (1 / 𝑥))
112111mpteq2ia 5216 . 2 (𝑥𝐷 ↦ ((1 / (abs‘𝑥)) · if(𝑥 < 0, -1, 1))) = (𝑥𝐷 ↦ (1 / 𝑥))
11367, 112eqtri 2758 1 (ℝ D (𝑥𝐷 ↦ (log‘(abs‘𝑥)))) = (𝑥𝐷 ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2932  Vcvv 3459  cdif 3923  cin 3925  wss 3926  c0 4308  ifcif 4500  {csn 4601  {cpr 4603   class class class wbr 5119  cmpt 5201  ran crn 5655  cres 5656  wf 6526  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   · cmul 11132  +∞cpnf 11264  -∞cmnf 11265  *cxr 11266   < clt 11267  cle 11268  -cneg 11465   / cdiv 11892  +crp 13006  (,)cioo 13360  (,]cioc 13361  abscabs 15251   D cdv 25814  logclog 26513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083  df-cos 16084  df-tan 16085  df-pi 16086  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818  df-log 26515
This theorem is referenced by:  readvcot  42354
  Copyright terms: Public domain W3C validator