![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrieqvd | Structured version Visualization version GIF version |
Description: In a Moore system, a set is independent if and only if, for all elements of the set, the closure of the set with the element removed is unequal to the closure of the original set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrieqvd.1 | β’ (π β π΄ β (Mooreβπ)) |
mrieqvd.2 | β’ π = (mrClsβπ΄) |
mrieqvd.3 | β’ πΌ = (mrIndβπ΄) |
mrieqvd.4 | β’ (π β π β π) |
Ref | Expression |
---|---|
mrieqvd | β’ (π β (π β πΌ β βπ₯ β π (πβ(π β {π₯})) β (πβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrieqvd.2 | . . 3 β’ π = (mrClsβπ΄) | |
2 | mrieqvd.3 | . . 3 β’ πΌ = (mrIndβπ΄) | |
3 | mrieqvd.1 | . . 3 β’ (π β π΄ β (Mooreβπ)) | |
4 | mrieqvd.4 | . . 3 β’ (π β π β π) | |
5 | 1, 2, 3, 4 | ismri2d 17618 | . 2 β’ (π β (π β πΌ β βπ₯ β π Β¬ π₯ β (πβ(π β {π₯})))) |
6 | 3 | adantr 479 | . . . . 5 β’ ((π β§ π₯ β π) β π΄ β (Mooreβπ)) |
7 | 4 | adantr 479 | . . . . 5 β’ ((π β§ π₯ β π) β π β π) |
8 | simpr 483 | . . . . 5 β’ ((π β§ π₯ β π) β π₯ β π) | |
9 | 6, 1, 7, 8 | mrieqvlemd 17614 | . . . 4 β’ ((π β§ π₯ β π) β (π₯ β (πβ(π β {π₯})) β (πβ(π β {π₯})) = (πβπ))) |
10 | 9 | necon3bbid 2974 | . . 3 β’ ((π β§ π₯ β π) β (Β¬ π₯ β (πβ(π β {π₯})) β (πβ(π β {π₯})) β (πβπ))) |
11 | 10 | ralbidva 3171 | . 2 β’ (π β (βπ₯ β π Β¬ π₯ β (πβ(π β {π₯})) β βπ₯ β π (πβ(π β {π₯})) β (πβπ))) |
12 | 5, 11 | bitrd 278 | 1 β’ (π β (π β πΌ β βπ₯ β π (πβ(π β {π₯})) β (πβπ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2936 βwral 3057 β cdif 3944 β wss 3947 {csn 4630 βcfv 6551 Moorecmre 17567 mrClscmrc 17568 mrIndcmri 17569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fv 6559 df-mre 17571 df-mrc 17572 df-mri 17573 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |