Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrieqvd | Structured version Visualization version GIF version |
Description: In a Moore system, a set is independent if and only if, for all elements of the set, the closure of the set with the element removed is unequal to the closure of the original set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrieqvd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrieqvd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrieqvd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mrieqvd.4 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
Ref | Expression |
---|---|
mrieqvd | ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrieqvd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
2 | mrieqvd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
3 | mrieqvd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
4 | mrieqvd.4 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
5 | 1, 2, 3, 4 | ismri2d 17259 | . 2 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
6 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ (Moore‘𝑋)) |
7 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ 𝑋) |
8 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
9 | 6, 1, 7, 8 | mrieqvlemd 17255 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁‘𝑆))) |
10 | 9 | necon3bbid 2980 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁‘𝑆))) |
11 | 10 | ralbidva 3119 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁‘𝑆))) |
12 | 5, 11 | bitrd 278 | 1 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 ‘cfv 6418 Moorecmre 17208 mrClscmrc 17209 mrIndcmri 17210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-mre 17212 df-mrc 17213 df-mri 17214 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |