![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrieqvd | Structured version Visualization version GIF version |
Description: In a Moore system, a set is independent if and only if, for all elements of the set, the closure of the set with the element removed is unequal to the closure of the original set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrieqvd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrieqvd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrieqvd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mrieqvd.4 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
Ref | Expression |
---|---|
mrieqvd | ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrieqvd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
2 | mrieqvd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
3 | mrieqvd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
4 | mrieqvd.4 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
5 | 1, 2, 3, 4 | ismri2d 17574 | . 2 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
6 | 3 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ (Moore‘𝑋)) |
7 | 4 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ 𝑋) |
8 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
9 | 6, 1, 7, 8 | mrieqvlemd 17570 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁‘𝑆))) |
10 | 9 | necon3bbid 2979 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁‘𝑆))) |
11 | 10 | ralbidva 3176 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁‘𝑆))) |
12 | 5, 11 | bitrd 279 | 1 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∖ cdif 3945 ⊆ wss 3948 {csn 4628 ‘cfv 6541 Moorecmre 17523 mrClscmrc 17524 mrIndcmri 17525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-mre 17527 df-mrc 17528 df-mri 17529 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |