MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqvd Structured version   Visualization version   GIF version

Theorem mrieqvd 17347
Description: In a Moore system, a set is independent if and only if, for all elements of the set, the closure of the set with the element removed is unequal to the closure of the original set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrieqvd.2 𝑁 = (mrCls‘𝐴)
mrieqvd.3 𝐼 = (mrInd‘𝐴)
mrieqvd.4 (𝜑𝑆𝑋)
Assertion
Ref Expression
mrieqvd (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem mrieqvd
StepHypRef Expression
1 mrieqvd.2 . . 3 𝑁 = (mrCls‘𝐴)
2 mrieqvd.3 . . 3 𝐼 = (mrInd‘𝐴)
3 mrieqvd.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
4 mrieqvd.4 . . 3 (𝜑𝑆𝑋)
51, 2, 3, 4ismri2d 17342 . 2 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
63adantr 481 . . . . 5 ((𝜑𝑥𝑆) → 𝐴 ∈ (Moore‘𝑋))
74adantr 481 . . . . 5 ((𝜑𝑥𝑆) → 𝑆𝑋)
8 simpr 485 . . . . 5 ((𝜑𝑥𝑆) → 𝑥𝑆)
96, 1, 7, 8mrieqvlemd 17338 . . . 4 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁𝑆)))
109necon3bbid 2981 . . 3 ((𝜑𝑥𝑆) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
1110ralbidva 3111 . 2 (𝜑 → (∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
125, 11bitrd 278 1 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  cdif 3884  wss 3887  {csn 4561  cfv 6433  Moorecmre 17291  mrClscmrc 17292  mrIndcmri 17293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-mre 17295  df-mrc 17296  df-mri 17297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator