MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqvd Structured version   Visualization version   GIF version

Theorem mrieqvd 17581
Description: In a Moore system, a set is independent if and only if, for all elements of the set, the closure of the set with the element removed is unequal to the closure of the original set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvd.1 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
mrieqvd.2 𝑁 = (mrClsβ€˜π΄)
mrieqvd.3 𝐼 = (mrIndβ€˜π΄)
mrieqvd.4 (πœ‘ β†’ 𝑆 βŠ† 𝑋)
Assertion
Ref Expression
mrieqvd (πœ‘ β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 (π‘β€˜(𝑆 βˆ– {π‘₯})) β‰  (π‘β€˜π‘†)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑆   πœ‘,π‘₯
Allowed substitution hints:   𝐼(π‘₯)   𝑁(π‘₯)   𝑋(π‘₯)

Proof of Theorem mrieqvd
StepHypRef Expression
1 mrieqvd.2 . . 3 𝑁 = (mrClsβ€˜π΄)
2 mrieqvd.3 . . 3 𝐼 = (mrIndβ€˜π΄)
3 mrieqvd.1 . . 3 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
4 mrieqvd.4 . . 3 (πœ‘ β†’ 𝑆 βŠ† 𝑋)
51, 2, 3, 4ismri2d 17576 . 2 (πœ‘ β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯}))))
63adantr 481 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
74adantr 481 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ 𝑆 βŠ† 𝑋)
8 simpr 485 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝑆)
96, 1, 7, 8mrieqvlemd 17572 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯})) ↔ (π‘β€˜(𝑆 βˆ– {π‘₯})) = (π‘β€˜π‘†)))
109necon3bbid 2978 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯})) ↔ (π‘β€˜(𝑆 βˆ– {π‘₯})) β‰  (π‘β€˜π‘†)))
1110ralbidva 3175 . 2 (πœ‘ β†’ (βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯})) ↔ βˆ€π‘₯ ∈ 𝑆 (π‘β€˜(𝑆 βˆ– {π‘₯})) β‰  (π‘β€˜π‘†)))
125, 11bitrd 278 1 (πœ‘ β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 (π‘β€˜(𝑆 βˆ– {π‘₯})) β‰  (π‘β€˜π‘†)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   βˆ– cdif 3945   βŠ† wss 3948  {csn 4628  β€˜cfv 6543  Moorecmre 17525  mrClscmrc 17526  mrIndcmri 17527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-mre 17529  df-mrc 17530  df-mri 17531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator