MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqvd Structured version   Visualization version   GIF version

Theorem mrieqvd 17589
Description: In a Moore system, a set is independent if and only if, for all elements of the set, the closure of the set with the element removed is unequal to the closure of the original set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvd.1 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
mrieqvd.2 𝑁 = (mrClsβ€˜π΄)
mrieqvd.3 𝐼 = (mrIndβ€˜π΄)
mrieqvd.4 (πœ‘ β†’ 𝑆 βŠ† 𝑋)
Assertion
Ref Expression
mrieqvd (πœ‘ β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 (π‘β€˜(𝑆 βˆ– {π‘₯})) β‰  (π‘β€˜π‘†)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑆   πœ‘,π‘₯
Allowed substitution hints:   𝐼(π‘₯)   𝑁(π‘₯)   𝑋(π‘₯)

Proof of Theorem mrieqvd
StepHypRef Expression
1 mrieqvd.2 . . 3 𝑁 = (mrClsβ€˜π΄)
2 mrieqvd.3 . . 3 𝐼 = (mrIndβ€˜π΄)
3 mrieqvd.1 . . 3 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
4 mrieqvd.4 . . 3 (πœ‘ β†’ 𝑆 βŠ† 𝑋)
51, 2, 3, 4ismri2d 17584 . 2 (πœ‘ β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯}))))
63adantr 480 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
74adantr 480 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ 𝑆 βŠ† 𝑋)
8 simpr 484 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝑆)
96, 1, 7, 8mrieqvlemd 17580 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯})) ↔ (π‘β€˜(𝑆 βˆ– {π‘₯})) = (π‘β€˜π‘†)))
109necon3bbid 2972 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯})) ↔ (π‘β€˜(𝑆 βˆ– {π‘₯})) β‰  (π‘β€˜π‘†)))
1110ralbidva 3169 . 2 (πœ‘ β†’ (βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯})) ↔ βˆ€π‘₯ ∈ 𝑆 (π‘β€˜(𝑆 βˆ– {π‘₯})) β‰  (π‘β€˜π‘†)))
125, 11bitrd 279 1 (πœ‘ β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 (π‘β€˜(𝑆 βˆ– {π‘₯})) β‰  (π‘β€˜π‘†)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055   βˆ– cdif 3940   βŠ† wss 3943  {csn 4623  β€˜cfv 6536  Moorecmre 17533  mrClscmrc 17534  mrIndcmri 17535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-mre 17537  df-mrc 17538  df-mri 17539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator