MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqvd Structured version   Visualization version   GIF version

Theorem mrieqvd 17605
Description: In a Moore system, a set is independent if and only if, for all elements of the set, the closure of the set with the element removed is unequal to the closure of the original set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrieqvd.2 𝑁 = (mrCls‘𝐴)
mrieqvd.3 𝐼 = (mrInd‘𝐴)
mrieqvd.4 (𝜑𝑆𝑋)
Assertion
Ref Expression
mrieqvd (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem mrieqvd
StepHypRef Expression
1 mrieqvd.2 . . 3 𝑁 = (mrCls‘𝐴)
2 mrieqvd.3 . . 3 𝐼 = (mrInd‘𝐴)
3 mrieqvd.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
4 mrieqvd.4 . . 3 (𝜑𝑆𝑋)
51, 2, 3, 4ismri2d 17600 . 2 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
63adantr 480 . . . . 5 ((𝜑𝑥𝑆) → 𝐴 ∈ (Moore‘𝑋))
74adantr 480 . . . . 5 ((𝜑𝑥𝑆) → 𝑆𝑋)
8 simpr 484 . . . . 5 ((𝜑𝑥𝑆) → 𝑥𝑆)
96, 1, 7, 8mrieqvlemd 17596 . . . 4 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁𝑆)))
109necon3bbid 2964 . . 3 ((𝜑𝑥𝑆) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
1110ralbidva 3156 . 2 (𝜑 → (∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
125, 11bitrd 279 1 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2927  wral 3046  cdif 3919  wss 3922  {csn 4597  cfv 6519  Moorecmre 17549  mrClscmrc 17550  mrIndcmri 17551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fv 6527  df-mre 17553  df-mrc 17554  df-mri 17555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator