Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismri2dad | Structured version Visualization version GIF version |
Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ismri2dad.1 | ⊢ 𝑁 = (mrCls‘𝐴) |
ismri2dad.2 | ⊢ 𝐼 = (mrInd‘𝐴) |
ismri2dad.3 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
ismri2dad.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
ismri2dad.5 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
ismri2dad | ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismri2dad.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
2 | ismri2dad.1 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | ismri2dad.2 | . . . 4 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | ismri2dad.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
5 | 3, 4, 1 | mrissd 17326 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
6 | 2, 3, 4, 5 | ismri2d 17323 | . . 3 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
7 | 1, 6 | mpbid 231 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) |
8 | ismri2dad.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
9 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝑥 = 𝑌) | |
10 | 9 | sneqd 4578 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → {𝑥} = {𝑌}) |
11 | 10 | difeq2d 4061 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑆 ∖ {𝑥}) = (𝑆 ∖ {𝑌})) |
12 | 11 | fveq2d 6772 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑌}))) |
13 | 9, 12 | eleq12d 2834 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
14 | 13 | notbid 317 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
15 | 8, 14 | rspcdv 3551 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
16 | 7, 15 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∖ cdif 3888 {csn 4566 ‘cfv 6430 Moorecmre 17272 mrClscmrc 17273 mrIndcmri 17274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fv 6438 df-mre 17276 df-mri 17278 |
This theorem is referenced by: mrieqv2d 17329 mreexmrid 17333 mreexexlem2d 17335 acsfiindd 18252 |
Copyright terms: Public domain | W3C validator |