![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismri2dad | Structured version Visualization version GIF version |
Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ismri2dad.1 | ⊢ 𝑁 = (mrCls‘𝐴) |
ismri2dad.2 | ⊢ 𝐼 = (mrInd‘𝐴) |
ismri2dad.3 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
ismri2dad.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
ismri2dad.5 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
ismri2dad | ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismri2dad.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
2 | ismri2dad.1 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | ismri2dad.2 | . . . 4 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | ismri2dad.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
5 | 3, 4, 1 | mrissd 17694 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
6 | 2, 3, 4, 5 | ismri2d 17691 | . . 3 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
7 | 1, 6 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) |
8 | ismri2dad.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
9 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝑥 = 𝑌) | |
10 | 9 | sneqd 4660 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → {𝑥} = {𝑌}) |
11 | 10 | difeq2d 4149 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑆 ∖ {𝑥}) = (𝑆 ∖ {𝑌})) |
12 | 11 | fveq2d 6924 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑌}))) |
13 | 9, 12 | eleq12d 2838 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
14 | 13 | notbid 318 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
15 | 8, 14 | rspcdv 3627 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
16 | 7, 15 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 {csn 4648 ‘cfv 6573 Moorecmre 17640 mrClscmrc 17641 mrIndcmri 17642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-mre 17644 df-mri 17646 |
This theorem is referenced by: mrieqv2d 17697 mreexmrid 17701 mreexexlem2d 17703 acsfiindd 18623 |
Copyright terms: Public domain | W3C validator |