| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismri2dad | Structured version Visualization version GIF version | ||
| Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ismri2dad.1 | ⊢ 𝑁 = (mrCls‘𝐴) |
| ismri2dad.2 | ⊢ 𝐼 = (mrInd‘𝐴) |
| ismri2dad.3 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| ismri2dad.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| ismri2dad.5 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| ismri2dad | ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismri2dad.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 2 | ismri2dad.1 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | ismri2dad.2 | . . . 4 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 4 | ismri2dad.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 5 | 3, 4, 1 | mrissd 17655 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 6 | 2, 3, 4, 5 | ismri2d 17652 | . . 3 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
| 7 | 1, 6 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) |
| 8 | ismri2dad.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 9 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝑥 = 𝑌) | |
| 10 | 9 | sneqd 4620 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → {𝑥} = {𝑌}) |
| 11 | 10 | difeq2d 4108 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑆 ∖ {𝑥}) = (𝑆 ∖ {𝑌})) |
| 12 | 11 | fveq2d 6891 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑌}))) |
| 13 | 9, 12 | eleq12d 2827 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
| 14 | 13 | notbid 318 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
| 15 | 8, 14 | rspcdv 3598 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
| 16 | 7, 15 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∖ cdif 3930 {csn 4608 ‘cfv 6542 Moorecmre 17601 mrClscmrc 17602 mrIndcmri 17603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fv 6550 df-mre 17605 df-mri 17607 |
| This theorem is referenced by: mrieqv2d 17658 mreexmrid 17662 mreexexlem2d 17664 acsfiindd 18572 |
| Copyright terms: Public domain | W3C validator |