MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri2dad Structured version   Visualization version   GIF version

Theorem ismri2dad 17650
Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri2dad.1 𝑁 = (mrCls‘𝐴)
ismri2dad.2 𝐼 = (mrInd‘𝐴)
ismri2dad.3 (𝜑𝐴 ∈ (Moore‘𝑋))
ismri2dad.4 (𝜑𝑆𝐼)
ismri2dad.5 (𝜑𝑌𝑆)
Assertion
Ref Expression
ismri2dad (𝜑 → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))

Proof of Theorem ismri2dad
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ismri2dad.4 . . 3 (𝜑𝑆𝐼)
2 ismri2dad.1 . . . 4 𝑁 = (mrCls‘𝐴)
3 ismri2dad.2 . . . 4 𝐼 = (mrInd‘𝐴)
4 ismri2dad.3 . . . 4 (𝜑𝐴 ∈ (Moore‘𝑋))
53, 4, 1mrissd 17649 . . . 4 (𝜑𝑆𝑋)
62, 3, 4, 5ismri2d 17646 . . 3 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
71, 6mpbid 231 . 2 (𝜑 → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
8 ismri2dad.5 . . 3 (𝜑𝑌𝑆)
9 simpr 483 . . . . 5 ((𝜑𝑥 = 𝑌) → 𝑥 = 𝑌)
109sneqd 4645 . . . . . . 7 ((𝜑𝑥 = 𝑌) → {𝑥} = {𝑌})
1110difeq2d 4121 . . . . . 6 ((𝜑𝑥 = 𝑌) → (𝑆 ∖ {𝑥}) = (𝑆 ∖ {𝑌}))
1211fveq2d 6905 . . . . 5 ((𝜑𝑥 = 𝑌) → (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑌})))
139, 12eleq12d 2820 . . . 4 ((𝜑𝑥 = 𝑌) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))))
1413notbid 317 . . 3 ((𝜑𝑥 = 𝑌) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))))
158, 14rspcdv 3600 . 2 (𝜑 → (∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))))
167, 15mpd 15 1 (𝜑 → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  cdif 3944  {csn 4633  cfv 6554  Moorecmre 17595  mrClscmrc 17596  mrIndcmri 17597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6506  df-fun 6556  df-fv 6562  df-mre 17599  df-mri 17601
This theorem is referenced by:  mrieqv2d  17652  mreexmrid  17656  mreexexlem2d  17658  acsfiindd  18578
  Copyright terms: Public domain W3C validator