![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismri2dad | Structured version Visualization version GIF version |
Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ismri2dad.1 | β’ π = (mrClsβπ΄) |
ismri2dad.2 | β’ πΌ = (mrIndβπ΄) |
ismri2dad.3 | β’ (π β π΄ β (Mooreβπ)) |
ismri2dad.4 | β’ (π β π β πΌ) |
ismri2dad.5 | β’ (π β π β π) |
Ref | Expression |
---|---|
ismri2dad | β’ (π β Β¬ π β (πβ(π β {π}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismri2dad.4 | . . 3 β’ (π β π β πΌ) | |
2 | ismri2dad.1 | . . . 4 β’ π = (mrClsβπ΄) | |
3 | ismri2dad.2 | . . . 4 β’ πΌ = (mrIndβπ΄) | |
4 | ismri2dad.3 | . . . 4 β’ (π β π΄ β (Mooreβπ)) | |
5 | 3, 4, 1 | mrissd 17589 | . . . 4 β’ (π β π β π) |
6 | 2, 3, 4, 5 | ismri2d 17586 | . . 3 β’ (π β (π β πΌ β βπ₯ β π Β¬ π₯ β (πβ(π β {π₯})))) |
7 | 1, 6 | mpbid 231 | . 2 β’ (π β βπ₯ β π Β¬ π₯ β (πβ(π β {π₯}))) |
8 | ismri2dad.5 | . . 3 β’ (π β π β π) | |
9 | simpr 484 | . . . . 5 β’ ((π β§ π₯ = π) β π₯ = π) | |
10 | 9 | sneqd 4635 | . . . . . . 7 β’ ((π β§ π₯ = π) β {π₯} = {π}) |
11 | 10 | difeq2d 4117 | . . . . . 6 β’ ((π β§ π₯ = π) β (π β {π₯}) = (π β {π})) |
12 | 11 | fveq2d 6889 | . . . . 5 β’ ((π β§ π₯ = π) β (πβ(π β {π₯})) = (πβ(π β {π}))) |
13 | 9, 12 | eleq12d 2821 | . . . 4 β’ ((π β§ π₯ = π) β (π₯ β (πβ(π β {π₯})) β π β (πβ(π β {π})))) |
14 | 13 | notbid 318 | . . 3 β’ ((π β§ π₯ = π) β (Β¬ π₯ β (πβ(π β {π₯})) β Β¬ π β (πβ(π β {π})))) |
15 | 8, 14 | rspcdv 3598 | . 2 β’ (π β (βπ₯ β π Β¬ π₯ β (πβ(π β {π₯})) β Β¬ π β (πβ(π β {π})))) |
16 | 7, 15 | mpd 15 | 1 β’ (π β Β¬ π β (πβ(π β {π}))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3055 β cdif 3940 {csn 4623 βcfv 6537 Moorecmre 17535 mrClscmrc 17536 mrIndcmri 17537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6489 df-fun 6539 df-fv 6545 df-mre 17539 df-mri 17541 |
This theorem is referenced by: mrieqv2d 17592 mreexmrid 17596 mreexexlem2d 17598 acsfiindd 18518 |
Copyright terms: Public domain | W3C validator |