![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismri2dad | Structured version Visualization version GIF version |
Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ismri2dad.1 | ⊢ 𝑁 = (mrCls‘𝐴) |
ismri2dad.2 | ⊢ 𝐼 = (mrInd‘𝐴) |
ismri2dad.3 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
ismri2dad.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
ismri2dad.5 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
ismri2dad | ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismri2dad.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
2 | ismri2dad.1 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | ismri2dad.2 | . . . 4 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | ismri2dad.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
5 | 3, 4, 1 | mrissd 17681 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
6 | 2, 3, 4, 5 | ismri2d 17678 | . . 3 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
7 | 1, 6 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) |
8 | ismri2dad.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
9 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝑥 = 𝑌) | |
10 | 9 | sneqd 4643 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → {𝑥} = {𝑌}) |
11 | 10 | difeq2d 4136 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑆 ∖ {𝑥}) = (𝑆 ∖ {𝑌})) |
12 | 11 | fveq2d 6911 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑌}))) |
13 | 9, 12 | eleq12d 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
14 | 13 | notbid 318 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
15 | 8, 14 | rspcdv 3614 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))) |
16 | 7, 15 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∖ cdif 3960 {csn 4631 ‘cfv 6563 Moorecmre 17627 mrClscmrc 17628 mrIndcmri 17629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-mre 17631 df-mri 17633 |
This theorem is referenced by: mrieqv2d 17684 mreexmrid 17688 mreexexlem2d 17690 acsfiindd 18611 |
Copyright terms: Public domain | W3C validator |