MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri2dad Structured version   Visualization version   GIF version

Theorem ismri2dad 17590
Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri2dad.1 𝑁 = (mrClsβ€˜π΄)
ismri2dad.2 𝐼 = (mrIndβ€˜π΄)
ismri2dad.3 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
ismri2dad.4 (πœ‘ β†’ 𝑆 ∈ 𝐼)
ismri2dad.5 (πœ‘ β†’ π‘Œ ∈ 𝑆)
Assertion
Ref Expression
ismri2dad (πœ‘ β†’ Β¬ π‘Œ ∈ (π‘β€˜(𝑆 βˆ– {π‘Œ})))

Proof of Theorem ismri2dad
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 ismri2dad.4 . . 3 (πœ‘ β†’ 𝑆 ∈ 𝐼)
2 ismri2dad.1 . . . 4 𝑁 = (mrClsβ€˜π΄)
3 ismri2dad.2 . . . 4 𝐼 = (mrIndβ€˜π΄)
4 ismri2dad.3 . . . 4 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
53, 4, 1mrissd 17589 . . . 4 (πœ‘ β†’ 𝑆 βŠ† 𝑋)
62, 3, 4, 5ismri2d 17586 . . 3 (πœ‘ β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯}))))
71, 6mpbid 231 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯})))
8 ismri2dad.5 . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑆)
9 simpr 484 . . . . 5 ((πœ‘ ∧ π‘₯ = π‘Œ) β†’ π‘₯ = π‘Œ)
109sneqd 4635 . . . . . . 7 ((πœ‘ ∧ π‘₯ = π‘Œ) β†’ {π‘₯} = {π‘Œ})
1110difeq2d 4117 . . . . . 6 ((πœ‘ ∧ π‘₯ = π‘Œ) β†’ (𝑆 βˆ– {π‘₯}) = (𝑆 βˆ– {π‘Œ}))
1211fveq2d 6889 . . . . 5 ((πœ‘ ∧ π‘₯ = π‘Œ) β†’ (π‘β€˜(𝑆 βˆ– {π‘₯})) = (π‘β€˜(𝑆 βˆ– {π‘Œ})))
139, 12eleq12d 2821 . . . 4 ((πœ‘ ∧ π‘₯ = π‘Œ) β†’ (π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯})) ↔ π‘Œ ∈ (π‘β€˜(𝑆 βˆ– {π‘Œ}))))
1413notbid 318 . . 3 ((πœ‘ ∧ π‘₯ = π‘Œ) β†’ (Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯})) ↔ Β¬ π‘Œ ∈ (π‘β€˜(𝑆 βˆ– {π‘Œ}))))
158, 14rspcdv 3598 . 2 (πœ‘ β†’ (βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯})) β†’ Β¬ π‘Œ ∈ (π‘β€˜(𝑆 βˆ– {π‘Œ}))))
167, 15mpd 15 1 (πœ‘ β†’ Β¬ π‘Œ ∈ (π‘β€˜(𝑆 βˆ– {π‘Œ})))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055   βˆ– cdif 3940  {csn 4623  β€˜cfv 6537  Moorecmre 17535  mrClscmrc 17536  mrIndcmri 17537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6489  df-fun 6539  df-fv 6545  df-mre 17539  df-mri 17541
This theorem is referenced by:  mrieqv2d  17592  mreexmrid  17596  mreexexlem2d  17598  acsfiindd  18518
  Copyright terms: Public domain W3C validator