Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngisom Structured version   Visualization version   GIF version

Theorem isrngisom 43599
Description: An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020.)
Assertion
Ref Expression
isrngisom ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIsom 𝑆) ↔ (𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅))))

Proof of Theorem isrngisom
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngisom 43591 . . . . 5 RngIsom = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHomo 𝑠) ∣ 𝑓 ∈ (𝑠 RngHomo 𝑟)})
21a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → RngIsom = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHomo 𝑠) ∣ 𝑓 ∈ (𝑠 RngHomo 𝑟)}))
3 oveq12 7016 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 RngHomo 𝑠) = (𝑅 RngHomo 𝑆))
43adantl 482 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑟 RngHomo 𝑠) = (𝑅 RngHomo 𝑆))
5 oveq12 7016 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠 RngHomo 𝑟) = (𝑆 RngHomo 𝑅))
65ancoms 459 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠 RngHomo 𝑟) = (𝑆 RngHomo 𝑅))
76adantl 482 . . . . . 6 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑠 RngHomo 𝑟) = (𝑆 RngHomo 𝑅))
87eleq2d 2866 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑓 ∈ (𝑠 RngHomo 𝑟) ↔ 𝑓 ∈ (𝑆 RngHomo 𝑅)))
94, 8rabeqbidv 3425 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RngHomo 𝑠) ∣ 𝑓 ∈ (𝑠 RngHomo 𝑟)} = {𝑓 ∈ (𝑅 RngHomo 𝑆) ∣ 𝑓 ∈ (𝑆 RngHomo 𝑅)})
10 elex 3450 . . . . 5 (𝑅𝑉𝑅 ∈ V)
1110adantr 481 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑅 ∈ V)
12 elex 3450 . . . . 5 (𝑆𝑊𝑆 ∈ V)
1312adantl 482 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑆 ∈ V)
14 ovex 7039 . . . . . 6 (𝑅 RngHomo 𝑆) ∈ V
1514rabex 5119 . . . . 5 {𝑓 ∈ (𝑅 RngHomo 𝑆) ∣ 𝑓 ∈ (𝑆 RngHomo 𝑅)} ∈ V
1615a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → {𝑓 ∈ (𝑅 RngHomo 𝑆) ∣ 𝑓 ∈ (𝑆 RngHomo 𝑅)} ∈ V)
172, 9, 11, 13, 16ovmpod 7149 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅 RngIsom 𝑆) = {𝑓 ∈ (𝑅 RngHomo 𝑆) ∣ 𝑓 ∈ (𝑆 RngHomo 𝑅)})
1817eleq2d 2866 . 2 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIsom 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RngHomo 𝑆) ∣ 𝑓 ∈ (𝑆 RngHomo 𝑅)}))
19 cnveq 5622 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
2019eleq1d 2865 . . 3 (𝑓 = 𝐹 → (𝑓 ∈ (𝑆 RngHomo 𝑅) ↔ 𝐹 ∈ (𝑆 RngHomo 𝑅)))
2120elrab 3613 . 2 (𝐹 ∈ {𝑓 ∈ (𝑅 RngHomo 𝑆) ∣ 𝑓 ∈ (𝑆 RngHomo 𝑅)} ↔ (𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅)))
2218, 21syl6bb 288 1 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIsom 𝑆) ↔ (𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1520  wcel 2079  {crab 3107  Vcvv 3432  ccnv 5434  (class class class)co 7007  cmpo 7009   RngHomo crngh 43588   RngIsom crngs 43589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pr 5214
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-br 4957  df-opab 5019  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-iota 6181  df-fun 6219  df-fv 6225  df-ov 7010  df-oprab 7011  df-mpo 7012  df-rngisom 43591
This theorem is referenced by:  isrngim  43607  rngcinv  43684  rngcinvALTV  43696
  Copyright terms: Public domain W3C validator