Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngisom Structured version   Visualization version   GIF version

Theorem isrngisom 44157
Description: An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020.)
Assertion
Ref Expression
isrngisom ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIsom 𝑆) ↔ (𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅))))

Proof of Theorem isrngisom
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngisom 44149 . . . . 5 RngIsom = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHomo 𝑠) ∣ 𝑓 ∈ (𝑠 RngHomo 𝑟)})
21a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → RngIsom = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHomo 𝑠) ∣ 𝑓 ∈ (𝑠 RngHomo 𝑟)}))
3 oveq12 7157 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 RngHomo 𝑠) = (𝑅 RngHomo 𝑆))
43adantl 484 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑟 RngHomo 𝑠) = (𝑅 RngHomo 𝑆))
5 oveq12 7157 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠 RngHomo 𝑟) = (𝑆 RngHomo 𝑅))
65ancoms 461 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠 RngHomo 𝑟) = (𝑆 RngHomo 𝑅))
76adantl 484 . . . . . 6 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑠 RngHomo 𝑟) = (𝑆 RngHomo 𝑅))
87eleq2d 2896 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑓 ∈ (𝑠 RngHomo 𝑟) ↔ 𝑓 ∈ (𝑆 RngHomo 𝑅)))
94, 8rabeqbidv 3484 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RngHomo 𝑠) ∣ 𝑓 ∈ (𝑠 RngHomo 𝑟)} = {𝑓 ∈ (𝑅 RngHomo 𝑆) ∣ 𝑓 ∈ (𝑆 RngHomo 𝑅)})
10 elex 3511 . . . . 5 (𝑅𝑉𝑅 ∈ V)
1110adantr 483 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑅 ∈ V)
12 elex 3511 . . . . 5 (𝑆𝑊𝑆 ∈ V)
1312adantl 484 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑆 ∈ V)
14 ovex 7181 . . . . . 6 (𝑅 RngHomo 𝑆) ∈ V
1514rabex 5226 . . . . 5 {𝑓 ∈ (𝑅 RngHomo 𝑆) ∣ 𝑓 ∈ (𝑆 RngHomo 𝑅)} ∈ V
1615a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → {𝑓 ∈ (𝑅 RngHomo 𝑆) ∣ 𝑓 ∈ (𝑆 RngHomo 𝑅)} ∈ V)
172, 9, 11, 13, 16ovmpod 7294 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅 RngIsom 𝑆) = {𝑓 ∈ (𝑅 RngHomo 𝑆) ∣ 𝑓 ∈ (𝑆 RngHomo 𝑅)})
1817eleq2d 2896 . 2 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIsom 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RngHomo 𝑆) ∣ 𝑓 ∈ (𝑆 RngHomo 𝑅)}))
19 cnveq 5737 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
2019eleq1d 2895 . . 3 (𝑓 = 𝐹 → (𝑓 ∈ (𝑆 RngHomo 𝑅) ↔ 𝐹 ∈ (𝑆 RngHomo 𝑅)))
2120elrab 3678 . 2 (𝐹 ∈ {𝑓 ∈ (𝑅 RngHomo 𝑆) ∣ 𝑓 ∈ (𝑆 RngHomo 𝑅)} ↔ (𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅)))
2218, 21syl6bb 289 1 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIsom 𝑆) ↔ (𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  {crab 3140  Vcvv 3493  ccnv 5547  (class class class)co 7148  cmpo 7150   RngHomo crngh 44146   RngIsom crngs 44147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-rngisom 44149
This theorem is referenced by:  isrngim  44165  rngcinv  44242  rngcinvALTV  44254
  Copyright terms: Public domain W3C validator