| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoisoval | Structured version Visualization version GIF version | ||
| Description: The set of ring isomorphisms. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| rngisoval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| rngisoval.2 | ⊢ 𝑋 = ran 𝐺 |
| rngisoval.3 | ⊢ 𝐽 = (1st ‘𝑆) |
| rngisoval.4 | ⊢ 𝑌 = ran 𝐽 |
| Ref | Expression |
|---|---|
| rngoisoval | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RingOpsIso 𝑆) = {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 7419 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 RingOpsHom 𝑠) = (𝑅 RingOpsHom 𝑆)) | |
| 2 | fveq2 6881 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) | |
| 3 | rngisoval.1 | . . . . . . . 8 ⊢ 𝐺 = (1st ‘𝑅) | |
| 4 | 2, 3 | eqtr4di 2789 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
| 5 | 4 | rneqd 5923 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = ran 𝐺) |
| 6 | rngisoval.2 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
| 7 | 5, 6 | eqtr4di 2789 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = 𝑋) |
| 8 | 7 | f1oeq2d 6819 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→ran (1st ‘𝑠))) |
| 9 | fveq2 6881 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (1st ‘𝑠) = (1st ‘𝑆)) | |
| 10 | rngisoval.3 | . . . . . . . 8 ⊢ 𝐽 = (1st ‘𝑆) | |
| 11 | 9, 10 | eqtr4di 2789 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (1st ‘𝑠) = 𝐽) |
| 12 | 11 | rneqd 5923 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ran (1st ‘𝑠) = ran 𝐽) |
| 13 | rngisoval.4 | . . . . . 6 ⊢ 𝑌 = ran 𝐽 | |
| 14 | 12, 13 | eqtr4di 2789 | . . . . 5 ⊢ (𝑠 = 𝑆 → ran (1st ‘𝑠) = 𝑌) |
| 15 | 14 | f1oeq3d 6820 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑓:𝑋–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→𝑌)) |
| 16 | 8, 15 | sylan9bb 509 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→𝑌)) |
| 17 | 1, 16 | rabeqbidv 3439 | . 2 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → {𝑓 ∈ (𝑟 RingOpsHom 𝑠) ∣ 𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠)} = {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
| 18 | df-rngoiso 38005 | . 2 ⊢ RingOpsIso = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (𝑟 RingOpsHom 𝑠) ∣ 𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠)}) | |
| 19 | ovex 7443 | . . 3 ⊢ (𝑅 RingOpsHom 𝑆) ∈ V | |
| 20 | 19 | rabex 5314 | . 2 ⊢ {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌} ∈ V |
| 21 | 17, 18, 20 | ovmpoa 7567 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RingOpsIso 𝑆) = {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 ran crn 5660 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 RingOpscrngo 37923 RingOpsHom crngohom 37989 RingOpsIso crngoiso 37990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-rngoiso 38005 |
| This theorem is referenced by: isrngoiso 38007 |
| Copyright terms: Public domain | W3C validator |