![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoisoval | Structured version Visualization version GIF version |
Description: The set of ring isomorphisms. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
rngisoval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngisoval.2 | ⊢ 𝑋 = ran 𝐺 |
rngisoval.3 | ⊢ 𝐽 = (1st ‘𝑆) |
rngisoval.4 | ⊢ 𝑌 = ran 𝐽 |
Ref | Expression |
---|---|
rngoisoval | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RingOpsIso 𝑆) = {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7457 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 RingOpsHom 𝑠) = (𝑅 RingOpsHom 𝑆)) | |
2 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) | |
3 | rngisoval.1 | . . . . . . . 8 ⊢ 𝐺 = (1st ‘𝑅) | |
4 | 2, 3 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
5 | 4 | rneqd 5963 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = ran 𝐺) |
6 | rngisoval.2 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
7 | 5, 6 | eqtr4di 2798 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = 𝑋) |
8 | 7 | f1oeq2d 6858 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→ran (1st ‘𝑠))) |
9 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (1st ‘𝑠) = (1st ‘𝑆)) | |
10 | rngisoval.3 | . . . . . . . 8 ⊢ 𝐽 = (1st ‘𝑆) | |
11 | 9, 10 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (1st ‘𝑠) = 𝐽) |
12 | 11 | rneqd 5963 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ran (1st ‘𝑠) = ran 𝐽) |
13 | rngisoval.4 | . . . . . 6 ⊢ 𝑌 = ran 𝐽 | |
14 | 12, 13 | eqtr4di 2798 | . . . . 5 ⊢ (𝑠 = 𝑆 → ran (1st ‘𝑠) = 𝑌) |
15 | 14 | f1oeq3d 6859 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑓:𝑋–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→𝑌)) |
16 | 8, 15 | sylan9bb 509 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→𝑌)) |
17 | 1, 16 | rabeqbidv 3462 | . 2 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → {𝑓 ∈ (𝑟 RingOpsHom 𝑠) ∣ 𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠)} = {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
18 | df-rngoiso 37936 | . 2 ⊢ RingOpsIso = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (𝑟 RingOpsHom 𝑠) ∣ 𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠)}) | |
19 | ovex 7481 | . . 3 ⊢ (𝑅 RingOpsHom 𝑆) ∈ V | |
20 | 19 | rabex 5357 | . 2 ⊢ {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌} ∈ V |
21 | 17, 18, 20 | ovmpoa 7605 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RingOpsIso 𝑆) = {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ran crn 5701 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 RingOpscrngo 37854 RingOpsHom crngohom 37920 RingOpsIso crngoiso 37921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-rngoiso 37936 |
This theorem is referenced by: isrngoiso 37938 |
Copyright terms: Public domain | W3C validator |