Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisoval Structured version   Visualization version   GIF version

Theorem rngoisoval 36062
Description: The set of ring isomorphisms. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
rngisoval.1 𝐺 = (1st𝑅)
rngisoval.2 𝑋 = ran 𝐺
rngisoval.3 𝐽 = (1st𝑆)
rngisoval.4 𝑌 = ran 𝐽
Assertion
Ref Expression
rngoisoval ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌})
Distinct variable groups:   𝑅,𝑓   𝑆,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝐺(𝑓)   𝐽(𝑓)

Proof of Theorem rngoisoval
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7264 . . 3 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 RngHom 𝑠) = (𝑅 RngHom 𝑆))
2 fveq2 6756 . . . . . . . 8 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
3 rngisoval.1 . . . . . . . 8 𝐺 = (1st𝑅)
42, 3eqtr4di 2797 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
54rneqd 5836 . . . . . 6 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
6 rngisoval.2 . . . . . 6 𝑋 = ran 𝐺
75, 6eqtr4di 2797 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
87f1oeq2d 6696 . . . 4 (𝑟 = 𝑅 → (𝑓:ran (1st𝑟)–1-1-onto→ran (1st𝑠) ↔ 𝑓:𝑋1-1-onto→ran (1st𝑠)))
9 fveq2 6756 . . . . . . . 8 (𝑠 = 𝑆 → (1st𝑠) = (1st𝑆))
10 rngisoval.3 . . . . . . . 8 𝐽 = (1st𝑆)
119, 10eqtr4di 2797 . . . . . . 7 (𝑠 = 𝑆 → (1st𝑠) = 𝐽)
1211rneqd 5836 . . . . . 6 (𝑠 = 𝑆 → ran (1st𝑠) = ran 𝐽)
13 rngisoval.4 . . . . . 6 𝑌 = ran 𝐽
1412, 13eqtr4di 2797 . . . . 5 (𝑠 = 𝑆 → ran (1st𝑠) = 𝑌)
1514f1oeq3d 6697 . . . 4 (𝑠 = 𝑆 → (𝑓:𝑋1-1-onto→ran (1st𝑠) ↔ 𝑓:𝑋1-1-onto𝑌))
168, 15sylan9bb 509 . . 3 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑓:ran (1st𝑟)–1-1-onto→ran (1st𝑠) ↔ 𝑓:𝑋1-1-onto𝑌))
171, 16rabeqbidv 3410 . 2 ((𝑟 = 𝑅𝑠 = 𝑆) → {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓:ran (1st𝑟)–1-1-onto→ran (1st𝑠)} = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌})
18 df-rngoiso 36061 . 2 RngIso = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓:ran (1st𝑟)–1-1-onto→ran (1st𝑠)})
19 ovex 7288 . . 3 (𝑅 RngHom 𝑆) ∈ V
2019rabex 5251 . 2 {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌} ∈ V
2117, 18, 20ovmpoa 7406 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  ran crn 5581  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  1st c1st 7802  RingOpscrngo 35979   RngHom crnghom 36045   RngIso crngiso 36046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-rngoiso 36061
This theorem is referenced by:  isrngoiso  36063
  Copyright terms: Public domain W3C validator