![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoisoval | Structured version Visualization version GIF version |
Description: The set of ring isomorphisms. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
rngisoval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngisoval.2 | ⊢ 𝑋 = ran 𝐺 |
rngisoval.3 | ⊢ 𝐽 = (1st ‘𝑆) |
rngisoval.4 | ⊢ 𝑌 = ran 𝐽 |
Ref | Expression |
---|---|
rngoisoval | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 6979 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 RngHom 𝑠) = (𝑅 RngHom 𝑆)) | |
2 | fveq2 6493 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) | |
3 | rngisoval.1 | . . . . . . . 8 ⊢ 𝐺 = (1st ‘𝑅) | |
4 | 2, 3 | syl6eqr 2826 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
5 | 4 | rneqd 5645 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = ran 𝐺) |
6 | rngisoval.2 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
7 | 5, 6 | syl6eqr 2826 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = 𝑋) |
8 | 7 | f1oeq2d 6434 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→ran (1st ‘𝑠))) |
9 | fveq2 6493 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (1st ‘𝑠) = (1st ‘𝑆)) | |
10 | rngisoval.3 | . . . . . . . 8 ⊢ 𝐽 = (1st ‘𝑆) | |
11 | 9, 10 | syl6eqr 2826 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (1st ‘𝑠) = 𝐽) |
12 | 11 | rneqd 5645 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ran (1st ‘𝑠) = ran 𝐽) |
13 | rngisoval.4 | . . . . . 6 ⊢ 𝑌 = ran 𝐽 | |
14 | 12, 13 | syl6eqr 2826 | . . . . 5 ⊢ (𝑠 = 𝑆 → ran (1st ‘𝑠) = 𝑌) |
15 | 14 | f1oeq3d 6435 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑓:𝑋–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→𝑌)) |
16 | 8, 15 | sylan9bb 502 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠) ↔ 𝑓:𝑋–1-1-onto→𝑌)) |
17 | 1, 16 | rabeqbidv 3402 | . 2 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠)} = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
18 | df-rngoiso 34696 | . 2 ⊢ RngIso = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠)}) | |
19 | ovex 7002 | . . 3 ⊢ (𝑅 RngHom 𝑆) ∈ V | |
20 | 19 | rabex 5085 | . 2 ⊢ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌} ∈ V |
21 | 17, 18, 20 | ovmpoa 7115 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 {crab 3086 ran crn 5402 –1-1-onto→wf1o 6181 ‘cfv 6182 (class class class)co 6970 1st c1st 7493 RingOpscrngo 34614 RngHom crnghom 34680 RngIso crngiso 34681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-id 5306 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-rngoiso 34696 |
This theorem is referenced by: isrngoiso 34698 |
Copyright terms: Public domain | W3C validator |