Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisoval Structured version   Visualization version   GIF version

Theorem rngoisoval 36840
Description: The set of ring isomorphisms. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
rngisoval.1 𝐺 = (1st β€˜π‘…)
rngisoval.2 𝑋 = ran 𝐺
rngisoval.3 𝐽 = (1st β€˜π‘†)
rngisoval.4 π‘Œ = ran 𝐽
Assertion
Ref Expression
rngoisoval ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) β†’ (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-ontoβ†’π‘Œ})
Distinct variable groups:   𝑅,𝑓   𝑆,𝑓   𝑓,𝑋   𝑓,π‘Œ
Allowed substitution hints:   𝐺(𝑓)   𝐽(𝑓)

Proof of Theorem rngoisoval
Dummy variables π‘Ÿ 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7417 . . 3 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ (π‘Ÿ RngHom 𝑠) = (𝑅 RngHom 𝑆))
2 fveq2 6891 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (1st β€˜π‘Ÿ) = (1st β€˜π‘…))
3 rngisoval.1 . . . . . . . 8 𝐺 = (1st β€˜π‘…)
42, 3eqtr4di 2790 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (1st β€˜π‘Ÿ) = 𝐺)
54rneqd 5937 . . . . . 6 (π‘Ÿ = 𝑅 β†’ ran (1st β€˜π‘Ÿ) = ran 𝐺)
6 rngisoval.2 . . . . . 6 𝑋 = ran 𝐺
75, 6eqtr4di 2790 . . . . 5 (π‘Ÿ = 𝑅 β†’ ran (1st β€˜π‘Ÿ) = 𝑋)
87f1oeq2d 6829 . . . 4 (π‘Ÿ = 𝑅 β†’ (𝑓:ran (1st β€˜π‘Ÿ)–1-1-ontoβ†’ran (1st β€˜π‘ ) ↔ 𝑓:𝑋–1-1-ontoβ†’ran (1st β€˜π‘ )))
9 fveq2 6891 . . . . . . . 8 (𝑠 = 𝑆 β†’ (1st β€˜π‘ ) = (1st β€˜π‘†))
10 rngisoval.3 . . . . . . . 8 𝐽 = (1st β€˜π‘†)
119, 10eqtr4di 2790 . . . . . . 7 (𝑠 = 𝑆 β†’ (1st β€˜π‘ ) = 𝐽)
1211rneqd 5937 . . . . . 6 (𝑠 = 𝑆 β†’ ran (1st β€˜π‘ ) = ran 𝐽)
13 rngisoval.4 . . . . . 6 π‘Œ = ran 𝐽
1412, 13eqtr4di 2790 . . . . 5 (𝑠 = 𝑆 β†’ ran (1st β€˜π‘ ) = π‘Œ)
1514f1oeq3d 6830 . . . 4 (𝑠 = 𝑆 β†’ (𝑓:𝑋–1-1-ontoβ†’ran (1st β€˜π‘ ) ↔ 𝑓:𝑋–1-1-ontoβ†’π‘Œ))
168, 15sylan9bb 510 . . 3 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ (𝑓:ran (1st β€˜π‘Ÿ)–1-1-ontoβ†’ran (1st β€˜π‘ ) ↔ 𝑓:𝑋–1-1-ontoβ†’π‘Œ))
171, 16rabeqbidv 3449 . 2 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ {𝑓 ∈ (π‘Ÿ RngHom 𝑠) ∣ 𝑓:ran (1st β€˜π‘Ÿ)–1-1-ontoβ†’ran (1st β€˜π‘ )} = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-ontoβ†’π‘Œ})
18 df-rngoiso 36839 . 2 RngIso = (π‘Ÿ ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (π‘Ÿ RngHom 𝑠) ∣ 𝑓:ran (1st β€˜π‘Ÿ)–1-1-ontoβ†’ran (1st β€˜π‘ )})
19 ovex 7441 . . 3 (𝑅 RngHom 𝑆) ∈ V
2019rabex 5332 . 2 {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-ontoβ†’π‘Œ} ∈ V
2117, 18, 20ovmpoa 7562 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) β†’ (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-ontoβ†’π‘Œ})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432  ran crn 5677  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7408  1st c1st 7972  RingOpscrngo 36757   RngHom crnghom 36823   RngIso crngiso 36824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-rngoiso 36839
This theorem is referenced by:  isrngoiso  36841
  Copyright terms: Public domain W3C validator