Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisoval Structured version   Visualization version   GIF version

Theorem rngoisoval 38016
Description: The set of ring isomorphisms. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
rngisoval.1 𝐺 = (1st𝑅)
rngisoval.2 𝑋 = ran 𝐺
rngisoval.3 𝐽 = (1st𝑆)
rngisoval.4 𝑌 = ran 𝐽
Assertion
Ref Expression
rngoisoval ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RingOpsIso 𝑆) = {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌})
Distinct variable groups:   𝑅,𝑓   𝑆,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝐺(𝑓)   𝐽(𝑓)

Proof of Theorem rngoisoval
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7355 . . 3 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 RingOpsHom 𝑠) = (𝑅 RingOpsHom 𝑆))
2 fveq2 6822 . . . . . . . 8 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
3 rngisoval.1 . . . . . . . 8 𝐺 = (1st𝑅)
42, 3eqtr4di 2784 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
54rneqd 5878 . . . . . 6 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
6 rngisoval.2 . . . . . 6 𝑋 = ran 𝐺
75, 6eqtr4di 2784 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
87f1oeq2d 6759 . . . 4 (𝑟 = 𝑅 → (𝑓:ran (1st𝑟)–1-1-onto→ran (1st𝑠) ↔ 𝑓:𝑋1-1-onto→ran (1st𝑠)))
9 fveq2 6822 . . . . . . . 8 (𝑠 = 𝑆 → (1st𝑠) = (1st𝑆))
10 rngisoval.3 . . . . . . . 8 𝐽 = (1st𝑆)
119, 10eqtr4di 2784 . . . . . . 7 (𝑠 = 𝑆 → (1st𝑠) = 𝐽)
1211rneqd 5878 . . . . . 6 (𝑠 = 𝑆 → ran (1st𝑠) = ran 𝐽)
13 rngisoval.4 . . . . . 6 𝑌 = ran 𝐽
1412, 13eqtr4di 2784 . . . . 5 (𝑠 = 𝑆 → ran (1st𝑠) = 𝑌)
1514f1oeq3d 6760 . . . 4 (𝑠 = 𝑆 → (𝑓:𝑋1-1-onto→ran (1st𝑠) ↔ 𝑓:𝑋1-1-onto𝑌))
168, 15sylan9bb 509 . . 3 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑓:ran (1st𝑟)–1-1-onto→ran (1st𝑠) ↔ 𝑓:𝑋1-1-onto𝑌))
171, 16rabeqbidv 3413 . 2 ((𝑟 = 𝑅𝑠 = 𝑆) → {𝑓 ∈ (𝑟 RingOpsHom 𝑠) ∣ 𝑓:ran (1st𝑟)–1-1-onto→ran (1st𝑠)} = {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌})
18 df-rngoiso 38015 . 2 RingOpsIso = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (𝑟 RingOpsHom 𝑠) ∣ 𝑓:ran (1st𝑟)–1-1-onto→ran (1st𝑠)})
19 ovex 7379 . . 3 (𝑅 RingOpsHom 𝑆) ∈ V
2019rabex 5277 . 2 {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌} ∈ V
2117, 18, 20ovmpoa 7501 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RingOpsIso 𝑆) = {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  ran crn 5617  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  1st c1st 7919  RingOpscrngo 37933   RingOpsHom crngohom 37999   RingOpsIso crngoiso 38000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-rngoiso 38015
This theorem is referenced by:  isrngoiso  38017
  Copyright terms: Public domain W3C validator