MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspansubgr Structured version   Visualization version   GIF version

Theorem uhgrspansubgr 29275
Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is actually a subgraph of 𝐺. A subgraph 𝑆 of a graph 𝐺 which has the same vertices as 𝐺 and is obtained by removing some edges of 𝐺 is called a spanning subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). Formally, the edges are "removed" by restricting the edge function of the original graph by an arbitrary class (which actually needs not to be a subset of the domain of the edge function). (Contributed by AV, 18-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
uhgrspan.g (𝜑𝐺 ∈ UHGraph)
Assertion
Ref Expression
uhgrspansubgr (𝜑𝑆 SubGraph 𝐺)

Proof of Theorem uhgrspansubgr
StepHypRef Expression
1 ssid 3986 . . 3 (Vtx‘𝑆) ⊆ (Vtx‘𝑆)
2 uhgrspan.q . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
31, 2sseqtrid 4006 . 2 (𝜑 → (Vtx‘𝑆) ⊆ 𝑉)
4 uhgrspan.r . . 3 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
5 resss 5993 . . 3 (𝐸𝐴) ⊆ 𝐸
64, 5eqsstrdi 4008 . 2 (𝜑 → (iEdg‘𝑆) ⊆ 𝐸)
7 uhgrspan.v . . 3 𝑉 = (Vtx‘𝐺)
8 uhgrspan.e . . 3 𝐸 = (iEdg‘𝐺)
9 uhgrspan.s . . 3 (𝜑𝑆𝑊)
10 uhgrspan.g . . 3 (𝜑𝐺 ∈ UHGraph)
117, 8, 9, 2, 4, 10uhgrspansubgrlem 29274 . 2 (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
128uhgrfun 29050 . . . 4 (𝐺 ∈ UHGraph → Fun 𝐸)
1310, 12syl 17 . . 3 (𝜑 → Fun 𝐸)
14 eqid 2736 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
15 eqid 2736 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
16 eqid 2736 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
1714, 7, 15, 8, 16issubgr2 29256 . . 3 ((𝐺 ∈ UHGraph ∧ Fun 𝐸𝑆𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
1810, 13, 9, 17syl3anc 1373 . 2 (𝜑 → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
193, 6, 11, 18mpbir3and 1343 1 (𝜑𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wss 3931  𝒫 cpw 4580   class class class wbr 5124  cres 5661  Fun wfun 6530  cfv 6536  Vtxcvtx 28980  iEdgciedg 28981  Edgcedg 29031  UHGraphcuhgr 29040   SubGraph csubgr 29251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-edg 29032  df-uhgr 29042  df-subgr 29252
This theorem is referenced by:  uhgrspan  29276  upgrspan  29277  umgrspan  29278  usgrspan  29279
  Copyright terms: Public domain W3C validator