![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrspansubgr | Structured version Visualization version GIF version |
Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is actually a subgraph of 𝐺. A subgraph 𝑆 of a graph 𝐺 which has the same vertices as 𝐺 and is obtained by removing some edges of 𝐺 is called a spanning subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). Formally, the edges are "removed" by restricting the edge function of the original graph by an arbitrary class (which actually needs not to be a subset of the domain of the edge function). (Contributed by AV, 18-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uhgrspan.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
uhgrspan.q | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
uhgrspan.r | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) |
uhgrspan.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
Ref | Expression |
---|---|
uhgrspansubgr | ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4031 | . . 3 ⊢ (Vtx‘𝑆) ⊆ (Vtx‘𝑆) | |
2 | uhgrspan.q | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
3 | 1, 2 | sseqtrid 4061 | . 2 ⊢ (𝜑 → (Vtx‘𝑆) ⊆ 𝑉) |
4 | uhgrspan.r | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) | |
5 | resss 6031 | . . 3 ⊢ (𝐸 ↾ 𝐴) ⊆ 𝐸 | |
6 | 4, 5 | eqsstrdi 4063 | . 2 ⊢ (𝜑 → (iEdg‘𝑆) ⊆ 𝐸) |
7 | uhgrspan.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | uhgrspan.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
9 | uhgrspan.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
10 | uhgrspan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
11 | 7, 8, 9, 2, 4, 10 | uhgrspansubgrlem 29325 | . 2 ⊢ (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) |
12 | 8 | uhgrfun 29101 | . . . 4 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐸) |
14 | eqid 2740 | . . . 4 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
15 | eqid 2740 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
16 | eqid 2740 | . . . 4 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
17 | 14, 7, 15, 8, 16 | issubgr2 29307 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ Fun 𝐸 ∧ 𝑆 ∈ 𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
18 | 10, 13, 9, 17 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
19 | 3, 6, 11, 18 | mpbir3and 1342 | 1 ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 ↾ cres 5702 Fun wfun 6567 ‘cfv 6573 Vtxcvtx 29031 iEdgciedg 29032 Edgcedg 29082 UHGraphcuhgr 29091 SubGraph csubgr 29302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-edg 29083 df-uhgr 29093 df-subgr 29303 |
This theorem is referenced by: uhgrspan 29327 upgrspan 29328 umgrspan 29329 usgrspan 29330 |
Copyright terms: Public domain | W3C validator |