MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspansubgr Structured version   Visualization version   GIF version

Theorem uhgrspansubgr 27081
Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is actually a subgraph of 𝐺. A subgraph 𝑆 of a graph 𝐺 which has the same vertices as 𝐺 and is obtained by removing some edges of 𝐺 is called a spanning subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). Formally, the edges are "removed" by restricting the edge function of the original graph by an arbitrary class (which actually needs not to be a subset of the domain of the edge function). (Contributed by AV, 18-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
uhgrspan.g (𝜑𝐺 ∈ UHGraph)
Assertion
Ref Expression
uhgrspansubgr (𝜑𝑆 SubGraph 𝐺)

Proof of Theorem uhgrspansubgr
StepHypRef Expression
1 ssid 3937 . . 3 (Vtx‘𝑆) ⊆ (Vtx‘𝑆)
2 uhgrspan.q . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
31, 2sseqtrid 3967 . 2 (𝜑 → (Vtx‘𝑆) ⊆ 𝑉)
4 uhgrspan.r . . 3 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
5 resss 5843 . . 3 (𝐸𝐴) ⊆ 𝐸
64, 5eqsstrdi 3969 . 2 (𝜑 → (iEdg‘𝑆) ⊆ 𝐸)
7 uhgrspan.v . . 3 𝑉 = (Vtx‘𝐺)
8 uhgrspan.e . . 3 𝐸 = (iEdg‘𝐺)
9 uhgrspan.s . . 3 (𝜑𝑆𝑊)
10 uhgrspan.g . . 3 (𝜑𝐺 ∈ UHGraph)
117, 8, 9, 2, 4, 10uhgrspansubgrlem 27080 . 2 (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
128uhgrfun 26859 . . . 4 (𝐺 ∈ UHGraph → Fun 𝐸)
1310, 12syl 17 . . 3 (𝜑 → Fun 𝐸)
14 eqid 2798 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
15 eqid 2798 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
16 eqid 2798 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
1714, 7, 15, 8, 16issubgr2 27062 . . 3 ((𝐺 ∈ UHGraph ∧ Fun 𝐸𝑆𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
1810, 13, 9, 17syl3anc 1368 . 2 (𝜑 → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
193, 6, 11, 18mpbir3and 1339 1 (𝜑𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  wss 3881  𝒫 cpw 4497   class class class wbr 5030  cres 5521  Fun wfun 6318  cfv 6324  Vtxcvtx 26789  iEdgciedg 26790  Edgcedg 26840  UHGraphcuhgr 26849   SubGraph csubgr 27057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-edg 26841  df-uhgr 26851  df-subgr 27058
This theorem is referenced by:  uhgrspan  27082  upgrspan  27083  umgrspan  27084  usgrspan  27085
  Copyright terms: Public domain W3C validator