Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrspansubgr | Structured version Visualization version GIF version |
Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is actually a subgraph of 𝐺. A subgraph 𝑆 of a graph 𝐺 which has the same vertices as 𝐺 and is obtained by removing some edges of 𝐺 is called a spanning subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). Formally, the edges are "removed" by restricting the edge function of the original graph by an arbitrary class (which actually needs not to be a subset of the domain of the edge function). (Contributed by AV, 18-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uhgrspan.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
uhgrspan.q | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
uhgrspan.r | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) |
uhgrspan.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
Ref | Expression |
---|---|
uhgrspansubgr | ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3943 | . . 3 ⊢ (Vtx‘𝑆) ⊆ (Vtx‘𝑆) | |
2 | uhgrspan.q | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
3 | 1, 2 | sseqtrid 3973 | . 2 ⊢ (𝜑 → (Vtx‘𝑆) ⊆ 𝑉) |
4 | uhgrspan.r | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) | |
5 | resss 5916 | . . 3 ⊢ (𝐸 ↾ 𝐴) ⊆ 𝐸 | |
6 | 4, 5 | eqsstrdi 3975 | . 2 ⊢ (𝜑 → (iEdg‘𝑆) ⊆ 𝐸) |
7 | uhgrspan.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | uhgrspan.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
9 | uhgrspan.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
10 | uhgrspan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
11 | 7, 8, 9, 2, 4, 10 | uhgrspansubgrlem 27657 | . 2 ⊢ (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) |
12 | 8 | uhgrfun 27436 | . . . 4 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐸) |
14 | eqid 2738 | . . . 4 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
15 | eqid 2738 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
16 | eqid 2738 | . . . 4 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
17 | 14, 7, 15, 8, 16 | issubgr2 27639 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ Fun 𝐸 ∧ 𝑆 ∈ 𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
18 | 10, 13, 9, 17 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
19 | 3, 6, 11, 18 | mpbir3and 1341 | 1 ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 class class class wbr 5074 ↾ cres 5591 Fun wfun 6427 ‘cfv 6433 Vtxcvtx 27366 iEdgciedg 27367 Edgcedg 27417 UHGraphcuhgr 27426 SubGraph csubgr 27634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-edg 27418 df-uhgr 27428 df-subgr 27635 |
This theorem is referenced by: uhgrspan 27659 upgrspan 27660 umgrspan 27661 usgrspan 27662 |
Copyright terms: Public domain | W3C validator |