MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspansubgr Structured version   Visualization version   GIF version

Theorem uhgrspansubgr 27561
Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is actually a subgraph of 𝐺. A subgraph 𝑆 of a graph 𝐺 which has the same vertices as 𝐺 and is obtained by removing some edges of 𝐺 is called a spanning subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). Formally, the edges are "removed" by restricting the edge function of the original graph by an arbitrary class (which actually needs not to be a subset of the domain of the edge function). (Contributed by AV, 18-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
uhgrspan.g (𝜑𝐺 ∈ UHGraph)
Assertion
Ref Expression
uhgrspansubgr (𝜑𝑆 SubGraph 𝐺)

Proof of Theorem uhgrspansubgr
StepHypRef Expression
1 ssid 3939 . . 3 (Vtx‘𝑆) ⊆ (Vtx‘𝑆)
2 uhgrspan.q . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
31, 2sseqtrid 3969 . 2 (𝜑 → (Vtx‘𝑆) ⊆ 𝑉)
4 uhgrspan.r . . 3 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
5 resss 5905 . . 3 (𝐸𝐴) ⊆ 𝐸
64, 5eqsstrdi 3971 . 2 (𝜑 → (iEdg‘𝑆) ⊆ 𝐸)
7 uhgrspan.v . . 3 𝑉 = (Vtx‘𝐺)
8 uhgrspan.e . . 3 𝐸 = (iEdg‘𝐺)
9 uhgrspan.s . . 3 (𝜑𝑆𝑊)
10 uhgrspan.g . . 3 (𝜑𝐺 ∈ UHGraph)
117, 8, 9, 2, 4, 10uhgrspansubgrlem 27560 . 2 (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
128uhgrfun 27339 . . . 4 (𝐺 ∈ UHGraph → Fun 𝐸)
1310, 12syl 17 . . 3 (𝜑 → Fun 𝐸)
14 eqid 2738 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
15 eqid 2738 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
16 eqid 2738 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
1714, 7, 15, 8, 16issubgr2 27542 . . 3 ((𝐺 ∈ UHGraph ∧ Fun 𝐸𝑆𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
1810, 13, 9, 17syl3anc 1369 . 2 (𝜑 → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
193, 6, 11, 18mpbir3and 1340 1 (𝜑𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cres 5582  Fun wfun 6412  cfv 6418  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  UHGraphcuhgr 27329   SubGraph csubgr 27537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-edg 27321  df-uhgr 27331  df-subgr 27538
This theorem is referenced by:  uhgrspan  27562  upgrspan  27563  umgrspan  27564  usgrspan  27565
  Copyright terms: Public domain W3C validator