![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrspansubgr | Structured version Visualization version GIF version |
Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is actually a subgraph of 𝐺. A subgraph 𝑆 of a graph 𝐺 which has the same vertices as 𝐺 and is obtained by removing some edges of 𝐺 is called a spanning subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). Formally, the edges are "removed" by restricting the edge function of the original graph by an arbitrary class (which actually needs not to be a subset of the domain of the edge function). (Contributed by AV, 18-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uhgrspan.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
uhgrspan.q | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
uhgrspan.r | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) |
uhgrspan.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
Ref | Expression |
---|---|
uhgrspansubgr | ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3848 | . . 3 ⊢ (Vtx‘𝑆) ⊆ (Vtx‘𝑆) | |
2 | uhgrspan.q | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
3 | 1, 2 | syl5sseq 3878 | . 2 ⊢ (𝜑 → (Vtx‘𝑆) ⊆ 𝑉) |
4 | uhgrspan.r | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) | |
5 | resss 5662 | . . 3 ⊢ (𝐸 ↾ 𝐴) ⊆ 𝐸 | |
6 | 4, 5 | syl6eqss 3880 | . 2 ⊢ (𝜑 → (iEdg‘𝑆) ⊆ 𝐸) |
7 | uhgrspan.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | uhgrspan.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
9 | uhgrspan.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
10 | uhgrspan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
11 | 7, 8, 9, 2, 4, 10 | uhgrspansubgrlem 26594 | . 2 ⊢ (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) |
12 | 8 | uhgrfun 26371 | . . . 4 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐸) |
14 | eqid 2825 | . . . 4 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
15 | eqid 2825 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
16 | eqid 2825 | . . . 4 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
17 | 14, 7, 15, 8, 16 | issubgr2 26576 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ Fun 𝐸 ∧ 𝑆 ∈ 𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
18 | 10, 13, 9, 17 | syl3anc 1494 | . 2 ⊢ (𝜑 → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
19 | 3, 6, 11, 18 | mpbir3and 1446 | 1 ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ⊆ wss 3798 𝒫 cpw 4380 class class class wbr 4875 ↾ cres 5348 Fun wfun 6121 ‘cfv 6127 Vtxcvtx 26301 iEdgciedg 26302 Edgcedg 26352 UHGraphcuhgr 26361 SubGraph csubgr 26571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-fv 6135 df-edg 26353 df-uhgr 26363 df-subgr 26572 |
This theorem is referenced by: uhgrspan 26596 upgrspan 26597 umgrspan 26598 usgrspan 26599 |
Copyright terms: Public domain | W3C validator |