| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrspansubgr | Structured version Visualization version GIF version | ||
| Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is actually a subgraph of 𝐺. A subgraph 𝑆 of a graph 𝐺 which has the same vertices as 𝐺 and is obtained by removing some edges of 𝐺 is called a spanning subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). Formally, the edges are "removed" by restricting the edge function of the original graph by an arbitrary class (which actually needs not to be a subset of the domain of the edge function). (Contributed by AV, 18-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgrspan.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrspan.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| uhgrspan.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| uhgrspan.q | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| uhgrspan.r | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) |
| uhgrspan.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| Ref | Expression |
|---|---|
| uhgrspansubgr | ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3986 | . . 3 ⊢ (Vtx‘𝑆) ⊆ (Vtx‘𝑆) | |
| 2 | uhgrspan.q | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
| 3 | 1, 2 | sseqtrid 4006 | . 2 ⊢ (𝜑 → (Vtx‘𝑆) ⊆ 𝑉) |
| 4 | uhgrspan.r | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) | |
| 5 | resss 5993 | . . 3 ⊢ (𝐸 ↾ 𝐴) ⊆ 𝐸 | |
| 6 | 4, 5 | eqsstrdi 4008 | . 2 ⊢ (𝜑 → (iEdg‘𝑆) ⊆ 𝐸) |
| 7 | uhgrspan.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | uhgrspan.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 9 | uhgrspan.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
| 10 | uhgrspan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
| 11 | 7, 8, 9, 2, 4, 10 | uhgrspansubgrlem 29274 | . 2 ⊢ (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) |
| 12 | 8 | uhgrfun 29050 | . . . 4 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| 13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐸) |
| 14 | eqid 2736 | . . . 4 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
| 15 | eqid 2736 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
| 16 | eqid 2736 | . . . 4 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
| 17 | 14, 7, 15, 8, 16 | issubgr2 29256 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ Fun 𝐸 ∧ 𝑆 ∈ 𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
| 18 | 10, 13, 9, 17 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
| 19 | 3, 6, 11, 18 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 𝒫 cpw 4580 class class class wbr 5124 ↾ cres 5661 Fun wfun 6530 ‘cfv 6536 Vtxcvtx 28980 iEdgciedg 28981 Edgcedg 29031 UHGraphcuhgr 29040 SubGraph csubgr 29251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-edg 29032 df-uhgr 29042 df-subgr 29252 |
| This theorem is referenced by: uhgrspan 29276 upgrspan 29277 umgrspan 29278 usgrspan 29279 |
| Copyright terms: Public domain | W3C validator |