|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfres2cn | Structured version Visualization version GIF version | ||
| Description: Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. Similar to mbfres2 25681 but here the theorem is extended to complex-valued functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| mbfres2cn.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | 
| mbfres2cn.b | ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) | 
| mbfres2cn.c | ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) | 
| mbfres2cn.a | ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) | 
| Ref | Expression | 
|---|---|
| mbfres2cn | ⊢ (𝜑 → 𝐹 ∈ MblFn) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ref 15152 | . . . 4 ⊢ ℜ:ℂ⟶ℝ | |
| 2 | mbfres2cn.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 3 | fco 6759 | . . . 4 ⊢ ((ℜ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℜ ∘ 𝐹):𝐴⟶ℝ) | |
| 4 | 1, 2, 3 | sylancr 587 | . . 3 ⊢ (𝜑 → (ℜ ∘ 𝐹):𝐴⟶ℝ) | 
| 5 | resco 6269 | . . . 4 ⊢ ((ℜ ∘ 𝐹) ↾ 𝐵) = (ℜ ∘ (𝐹 ↾ 𝐵)) | |
| 6 | mbfres2cn.b | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) | |
| 7 | fresin 6776 | . . . . . . 7 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ) | |
| 8 | ismbfcn 25665 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ((ℜ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn))) | |
| 9 | 2, 7, 8 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ((ℜ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn))) | 
| 10 | 6, 9 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ((ℜ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn)) | 
| 11 | 10 | simpld 494 | . . . 4 ⊢ (𝜑 → (ℜ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn) | 
| 12 | 5, 11 | eqeltrid 2844 | . . 3 ⊢ (𝜑 → ((ℜ ∘ 𝐹) ↾ 𝐵) ∈ MblFn) | 
| 13 | resco 6269 | . . . 4 ⊢ ((ℜ ∘ 𝐹) ↾ 𝐶) = (ℜ ∘ (𝐹 ↾ 𝐶)) | |
| 14 | mbfres2cn.c | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) | |
| 15 | fresin 6776 | . . . . . . 7 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ↾ 𝐶):(𝐴 ∩ 𝐶)⟶ℂ) | |
| 16 | ismbfcn 25665 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝐶):(𝐴 ∩ 𝐶)⟶ℂ → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ((ℜ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn))) | |
| 17 | 2, 15, 16 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ((ℜ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn))) | 
| 18 | 14, 17 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ((ℜ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn)) | 
| 19 | 18 | simpld 494 | . . . 4 ⊢ (𝜑 → (ℜ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn) | 
| 20 | 13, 19 | eqeltrid 2844 | . . 3 ⊢ (𝜑 → ((ℜ ∘ 𝐹) ↾ 𝐶) ∈ MblFn) | 
| 21 | mbfres2cn.a | . . 3 ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) | |
| 22 | 4, 12, 20, 21 | mbfres2 25681 | . 2 ⊢ (𝜑 → (ℜ ∘ 𝐹) ∈ MblFn) | 
| 23 | imf 15153 | . . . 4 ⊢ ℑ:ℂ⟶ℝ | |
| 24 | fco 6759 | . . . 4 ⊢ ((ℑ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℑ ∘ 𝐹):𝐴⟶ℝ) | |
| 25 | 23, 2, 24 | sylancr 587 | . . 3 ⊢ (𝜑 → (ℑ ∘ 𝐹):𝐴⟶ℝ) | 
| 26 | resco 6269 | . . . 4 ⊢ ((ℑ ∘ 𝐹) ↾ 𝐵) = (ℑ ∘ (𝐹 ↾ 𝐵)) | |
| 27 | 10 | simprd 495 | . . . 4 ⊢ (𝜑 → (ℑ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn) | 
| 28 | 26, 27 | eqeltrid 2844 | . . 3 ⊢ (𝜑 → ((ℑ ∘ 𝐹) ↾ 𝐵) ∈ MblFn) | 
| 29 | resco 6269 | . . . 4 ⊢ ((ℑ ∘ 𝐹) ↾ 𝐶) = (ℑ ∘ (𝐹 ↾ 𝐶)) | |
| 30 | 18 | simprd 495 | . . . 4 ⊢ (𝜑 → (ℑ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn) | 
| 31 | 29, 30 | eqeltrid 2844 | . . 3 ⊢ (𝜑 → ((ℑ ∘ 𝐹) ↾ 𝐶) ∈ MblFn) | 
| 32 | 25, 28, 31, 21 | mbfres2 25681 | . 2 ⊢ (𝜑 → (ℑ ∘ 𝐹) ∈ MblFn) | 
| 33 | ismbfcn 25665 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) | |
| 34 | 2, 33 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) | 
| 35 | 22, 32, 34 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹 ∈ MblFn) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∪ cun 3948 ∩ cin 3949 ↾ cres 5686 ∘ ccom 5688 ⟶wf 6556 ℂcc 11154 ℝcr 11155 ℜcre 15137 ℑcim 15138 MblFncmbf 25650 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-q 12992 df-rp 13036 df-xadd 13156 df-ioo 13392 df-ico 13394 df-icc 13395 df-fz 13549 df-fzo 13696 df-fl 13833 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-sum 15724 df-xmet 21358 df-met 21359 df-ovol 25500 df-vol 25501 df-mbf 25655 | 
| This theorem is referenced by: iblsplit 45986 | 
| Copyright terms: Public domain | W3C validator |