Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfres2cn Structured version   Visualization version   GIF version

Theorem mbfres2cn 42457
Description: Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. Similar to mbfres2 24240 but here the theorem is extended to complex-valued functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
mbfres2cn.f (𝜑𝐹:𝐴⟶ℂ)
mbfres2cn.b (𝜑 → (𝐹𝐵) ∈ MblFn)
mbfres2cn.c (𝜑 → (𝐹𝐶) ∈ MblFn)
mbfres2cn.a (𝜑 → (𝐵𝐶) = 𝐴)
Assertion
Ref Expression
mbfres2cn (𝜑𝐹 ∈ MblFn)

Proof of Theorem mbfres2cn
StepHypRef Expression
1 ref 14462 . . . 4 ℜ:ℂ⟶ℝ
2 mbfres2cn.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
3 fco 6514 . . . 4 ((ℜ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℜ ∘ 𝐹):𝐴⟶ℝ)
41, 2, 3sylancr 590 . . 3 (𝜑 → (ℜ ∘ 𝐹):𝐴⟶ℝ)
5 resco 6086 . . . 4 ((ℜ ∘ 𝐹) ↾ 𝐵) = (ℜ ∘ (𝐹𝐵))
6 mbfres2cn.b . . . . . 6 (𝜑 → (𝐹𝐵) ∈ MblFn)
7 fresin 6530 . . . . . . 7 (𝐹:𝐴⟶ℂ → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
8 ismbfcn 24224 . . . . . . 7 ((𝐹𝐵):(𝐴𝐵)⟶ℂ → ((𝐹𝐵) ∈ MblFn ↔ ((ℜ ∘ (𝐹𝐵)) ∈ MblFn ∧ (ℑ ∘ (𝐹𝐵)) ∈ MblFn)))
92, 7, 83syl 18 . . . . . 6 (𝜑 → ((𝐹𝐵) ∈ MblFn ↔ ((ℜ ∘ (𝐹𝐵)) ∈ MblFn ∧ (ℑ ∘ (𝐹𝐵)) ∈ MblFn)))
106, 9mpbid 235 . . . . 5 (𝜑 → ((ℜ ∘ (𝐹𝐵)) ∈ MblFn ∧ (ℑ ∘ (𝐹𝐵)) ∈ MblFn))
1110simpld 498 . . . 4 (𝜑 → (ℜ ∘ (𝐹𝐵)) ∈ MblFn)
125, 11eqeltrid 2920 . . 3 (𝜑 → ((ℜ ∘ 𝐹) ↾ 𝐵) ∈ MblFn)
13 resco 6086 . . . 4 ((ℜ ∘ 𝐹) ↾ 𝐶) = (ℜ ∘ (𝐹𝐶))
14 mbfres2cn.c . . . . . 6 (𝜑 → (𝐹𝐶) ∈ MblFn)
15 fresin 6530 . . . . . . 7 (𝐹:𝐴⟶ℂ → (𝐹𝐶):(𝐴𝐶)⟶ℂ)
16 ismbfcn 24224 . . . . . . 7 ((𝐹𝐶):(𝐴𝐶)⟶ℂ → ((𝐹𝐶) ∈ MblFn ↔ ((ℜ ∘ (𝐹𝐶)) ∈ MblFn ∧ (ℑ ∘ (𝐹𝐶)) ∈ MblFn)))
172, 15, 163syl 18 . . . . . 6 (𝜑 → ((𝐹𝐶) ∈ MblFn ↔ ((ℜ ∘ (𝐹𝐶)) ∈ MblFn ∧ (ℑ ∘ (𝐹𝐶)) ∈ MblFn)))
1814, 17mpbid 235 . . . . 5 (𝜑 → ((ℜ ∘ (𝐹𝐶)) ∈ MblFn ∧ (ℑ ∘ (𝐹𝐶)) ∈ MblFn))
1918simpld 498 . . . 4 (𝜑 → (ℜ ∘ (𝐹𝐶)) ∈ MblFn)
2013, 19eqeltrid 2920 . . 3 (𝜑 → ((ℜ ∘ 𝐹) ↾ 𝐶) ∈ MblFn)
21 mbfres2cn.a . . 3 (𝜑 → (𝐵𝐶) = 𝐴)
224, 12, 20, 21mbfres2 24240 . 2 (𝜑 → (ℜ ∘ 𝐹) ∈ MblFn)
23 imf 14463 . . . 4 ℑ:ℂ⟶ℝ
24 fco 6514 . . . 4 ((ℑ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℑ ∘ 𝐹):𝐴⟶ℝ)
2523, 2, 24sylancr 590 . . 3 (𝜑 → (ℑ ∘ 𝐹):𝐴⟶ℝ)
26 resco 6086 . . . 4 ((ℑ ∘ 𝐹) ↾ 𝐵) = (ℑ ∘ (𝐹𝐵))
2710simprd 499 . . . 4 (𝜑 → (ℑ ∘ (𝐹𝐵)) ∈ MblFn)
2826, 27eqeltrid 2920 . . 3 (𝜑 → ((ℑ ∘ 𝐹) ↾ 𝐵) ∈ MblFn)
29 resco 6086 . . . 4 ((ℑ ∘ 𝐹) ↾ 𝐶) = (ℑ ∘ (𝐹𝐶))
3018simprd 499 . . . 4 (𝜑 → (ℑ ∘ (𝐹𝐶)) ∈ MblFn)
3129, 30eqeltrid 2920 . . 3 (𝜑 → ((ℑ ∘ 𝐹) ↾ 𝐶) ∈ MblFn)
3225, 28, 31, 21mbfres2 24240 . 2 (𝜑 → (ℑ ∘ 𝐹) ∈ MblFn)
33 ismbfcn 24224 . . 3 (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
342, 33syl 17 . 2 (𝜑 → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
3522, 32, 34mpbir2and 712 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  cun 3916  cin 3917  cres 5540  ccom 5542  wf 6334  cc 10522  cr 10523  cre 14447  cim 14448  MblFncmbf 24209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-inf2 9090  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601  ax-pre-sup 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-se 5498  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-isom 6347  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7674  df-2nd 7675  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-inf 8893  df-oi 8960  df-dju 9316  df-card 9354  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-div 11285  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-sum 15034  df-xmet 20526  df-met 20527  df-ovol 24059  df-vol 24060  df-mbf 24214
This theorem is referenced by:  iblsplit  42465
  Copyright terms: Public domain W3C validator