Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfres2cn | Structured version Visualization version GIF version |
Description: Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. Similar to mbfres2 24809 but here the theorem is extended to complex-valued functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
mbfres2cn.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
mbfres2cn.b | ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) |
mbfres2cn.c | ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) |
mbfres2cn.a | ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) |
Ref | Expression |
---|---|
mbfres2cn | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ref 14823 | . . . 4 ⊢ ℜ:ℂ⟶ℝ | |
2 | mbfres2cn.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
3 | fco 6624 | . . . 4 ⊢ ((ℜ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℜ ∘ 𝐹):𝐴⟶ℝ) | |
4 | 1, 2, 3 | sylancr 587 | . . 3 ⊢ (𝜑 → (ℜ ∘ 𝐹):𝐴⟶ℝ) |
5 | resco 6154 | . . . 4 ⊢ ((ℜ ∘ 𝐹) ↾ 𝐵) = (ℜ ∘ (𝐹 ↾ 𝐵)) | |
6 | mbfres2cn.b | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) | |
7 | fresin 6643 | . . . . . . 7 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ) | |
8 | ismbfcn 24793 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ((ℜ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn))) | |
9 | 2, 7, 8 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ((ℜ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn))) |
10 | 6, 9 | mpbid 231 | . . . . 5 ⊢ (𝜑 → ((ℜ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn)) |
11 | 10 | simpld 495 | . . . 4 ⊢ (𝜑 → (ℜ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn) |
12 | 5, 11 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → ((ℜ ∘ 𝐹) ↾ 𝐵) ∈ MblFn) |
13 | resco 6154 | . . . 4 ⊢ ((ℜ ∘ 𝐹) ↾ 𝐶) = (ℜ ∘ (𝐹 ↾ 𝐶)) | |
14 | mbfres2cn.c | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) | |
15 | fresin 6643 | . . . . . . 7 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ↾ 𝐶):(𝐴 ∩ 𝐶)⟶ℂ) | |
16 | ismbfcn 24793 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝐶):(𝐴 ∩ 𝐶)⟶ℂ → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ((ℜ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn))) | |
17 | 2, 15, 16 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ((ℜ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn))) |
18 | 14, 17 | mpbid 231 | . . . . 5 ⊢ (𝜑 → ((ℜ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn)) |
19 | 18 | simpld 495 | . . . 4 ⊢ (𝜑 → (ℜ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn) |
20 | 13, 19 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → ((ℜ ∘ 𝐹) ↾ 𝐶) ∈ MblFn) |
21 | mbfres2cn.a | . . 3 ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) | |
22 | 4, 12, 20, 21 | mbfres2 24809 | . 2 ⊢ (𝜑 → (ℜ ∘ 𝐹) ∈ MblFn) |
23 | imf 14824 | . . . 4 ⊢ ℑ:ℂ⟶ℝ | |
24 | fco 6624 | . . . 4 ⊢ ((ℑ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℑ ∘ 𝐹):𝐴⟶ℝ) | |
25 | 23, 2, 24 | sylancr 587 | . . 3 ⊢ (𝜑 → (ℑ ∘ 𝐹):𝐴⟶ℝ) |
26 | resco 6154 | . . . 4 ⊢ ((ℑ ∘ 𝐹) ↾ 𝐵) = (ℑ ∘ (𝐹 ↾ 𝐵)) | |
27 | 10 | simprd 496 | . . . 4 ⊢ (𝜑 → (ℑ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn) |
28 | 26, 27 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → ((ℑ ∘ 𝐹) ↾ 𝐵) ∈ MblFn) |
29 | resco 6154 | . . . 4 ⊢ ((ℑ ∘ 𝐹) ↾ 𝐶) = (ℑ ∘ (𝐹 ↾ 𝐶)) | |
30 | 18 | simprd 496 | . . . 4 ⊢ (𝜑 → (ℑ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn) |
31 | 29, 30 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → ((ℑ ∘ 𝐹) ↾ 𝐶) ∈ MblFn) |
32 | 25, 28, 31, 21 | mbfres2 24809 | . 2 ⊢ (𝜑 → (ℑ ∘ 𝐹) ∈ MblFn) |
33 | ismbfcn 24793 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) | |
34 | 2, 33 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
35 | 22, 32, 34 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝐹 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ∩ cin 3886 ↾ cres 5591 ∘ ccom 5593 ⟶wf 6429 ℂcc 10869 ℝcr 10870 ℜcre 14808 ℑcim 14809 MblFncmbf 24778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xadd 12849 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-xmet 20590 df-met 20591 df-ovol 24628 df-vol 24629 df-mbf 24783 |
This theorem is referenced by: iblsplit 43507 |
Copyright terms: Public domain | W3C validator |