| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfres2cn | Structured version Visualization version GIF version | ||
| Description: Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. Similar to mbfres2 25553 but here the theorem is extended to complex-valued functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| mbfres2cn.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| mbfres2cn.b | ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) |
| mbfres2cn.c | ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) |
| mbfres2cn.a | ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) |
| Ref | Expression |
|---|---|
| mbfres2cn | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ref 15085 | . . . 4 ⊢ ℜ:ℂ⟶ℝ | |
| 2 | mbfres2cn.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 3 | fco 6715 | . . . 4 ⊢ ((ℜ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℜ ∘ 𝐹):𝐴⟶ℝ) | |
| 4 | 1, 2, 3 | sylancr 587 | . . 3 ⊢ (𝜑 → (ℜ ∘ 𝐹):𝐴⟶ℝ) |
| 5 | resco 6226 | . . . 4 ⊢ ((ℜ ∘ 𝐹) ↾ 𝐵) = (ℜ ∘ (𝐹 ↾ 𝐵)) | |
| 6 | mbfres2cn.b | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) | |
| 7 | fresin 6732 | . . . . . . 7 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ) | |
| 8 | ismbfcn 25537 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ((ℜ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn))) | |
| 9 | 2, 7, 8 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ((ℜ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn))) |
| 10 | 6, 9 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ((ℜ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn)) |
| 11 | 10 | simpld 494 | . . . 4 ⊢ (𝜑 → (ℜ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn) |
| 12 | 5, 11 | eqeltrid 2833 | . . 3 ⊢ (𝜑 → ((ℜ ∘ 𝐹) ↾ 𝐵) ∈ MblFn) |
| 13 | resco 6226 | . . . 4 ⊢ ((ℜ ∘ 𝐹) ↾ 𝐶) = (ℜ ∘ (𝐹 ↾ 𝐶)) | |
| 14 | mbfres2cn.c | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) | |
| 15 | fresin 6732 | . . . . . . 7 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ↾ 𝐶):(𝐴 ∩ 𝐶)⟶ℂ) | |
| 16 | ismbfcn 25537 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝐶):(𝐴 ∩ 𝐶)⟶ℂ → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ((ℜ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn))) | |
| 17 | 2, 15, 16 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ((ℜ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn))) |
| 18 | 14, 17 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ((ℜ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn ∧ (ℑ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn)) |
| 19 | 18 | simpld 494 | . . . 4 ⊢ (𝜑 → (ℜ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn) |
| 20 | 13, 19 | eqeltrid 2833 | . . 3 ⊢ (𝜑 → ((ℜ ∘ 𝐹) ↾ 𝐶) ∈ MblFn) |
| 21 | mbfres2cn.a | . . 3 ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) | |
| 22 | 4, 12, 20, 21 | mbfres2 25553 | . 2 ⊢ (𝜑 → (ℜ ∘ 𝐹) ∈ MblFn) |
| 23 | imf 15086 | . . . 4 ⊢ ℑ:ℂ⟶ℝ | |
| 24 | fco 6715 | . . . 4 ⊢ ((ℑ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℑ ∘ 𝐹):𝐴⟶ℝ) | |
| 25 | 23, 2, 24 | sylancr 587 | . . 3 ⊢ (𝜑 → (ℑ ∘ 𝐹):𝐴⟶ℝ) |
| 26 | resco 6226 | . . . 4 ⊢ ((ℑ ∘ 𝐹) ↾ 𝐵) = (ℑ ∘ (𝐹 ↾ 𝐵)) | |
| 27 | 10 | simprd 495 | . . . 4 ⊢ (𝜑 → (ℑ ∘ (𝐹 ↾ 𝐵)) ∈ MblFn) |
| 28 | 26, 27 | eqeltrid 2833 | . . 3 ⊢ (𝜑 → ((ℑ ∘ 𝐹) ↾ 𝐵) ∈ MblFn) |
| 29 | resco 6226 | . . . 4 ⊢ ((ℑ ∘ 𝐹) ↾ 𝐶) = (ℑ ∘ (𝐹 ↾ 𝐶)) | |
| 30 | 18 | simprd 495 | . . . 4 ⊢ (𝜑 → (ℑ ∘ (𝐹 ↾ 𝐶)) ∈ MblFn) |
| 31 | 29, 30 | eqeltrid 2833 | . . 3 ⊢ (𝜑 → ((ℑ ∘ 𝐹) ↾ 𝐶) ∈ MblFn) |
| 32 | 25, 28, 31, 21 | mbfres2 25553 | . 2 ⊢ (𝜑 → (ℑ ∘ 𝐹) ∈ MblFn) |
| 33 | ismbfcn 25537 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) | |
| 34 | 2, 33 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
| 35 | 22, 32, 34 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ∩ cin 3916 ↾ cres 5643 ∘ ccom 5645 ⟶wf 6510 ℂcc 11073 ℝcr 11074 ℜcre 15070 ℑcim 15071 MblFncmbf 25522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xadd 13080 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-xmet 21264 df-met 21265 df-ovol 25372 df-vol 25373 df-mbf 25527 |
| This theorem is referenced by: iblsplit 45971 |
| Copyright terms: Public domain | W3C validator |