Proof of Theorem fourierdlem109
Step | Hyp | Ref
| Expression |
1 | | fourierdlem109.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | 1 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑋) → 𝐴 ∈ ℝ) |
3 | | fourierdlem109.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | 3 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑋) → 𝐵 ∈ ℝ) |
5 | | fourierdlem109.t |
. . 3
⊢ 𝑇 = (𝐵 − 𝐴) |
6 | | fourierdlem109.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ ℝ) |
7 | 6 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑋) → 𝑋 ∈ ℝ) |
8 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑋) → 0 < 𝑋) |
9 | 7, 8 | elrpd 12779 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑋) → 𝑋 ∈
ℝ+) |
10 | | fourierdlem109.p |
. . 3
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
11 | | fourierdlem109.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) |
12 | 11 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑋) → 𝑀 ∈ ℕ) |
13 | | fourierdlem109.q |
. . . 4
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
14 | 13 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑋) → 𝑄 ∈ (𝑃‘𝑀)) |
15 | | fourierdlem109.f |
. . . 4
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
16 | 15 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑋) → 𝐹:ℝ⟶ℂ) |
17 | | fourierdlem109.fper |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
18 | 17 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 0 < 𝑋) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
19 | | fourierdlem109.fcn |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
20 | 19 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
21 | | fourierdlem109.r |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
22 | 21 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
23 | | fourierdlem109.l |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
24 | 23 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
25 | 2, 4, 5, 9, 10, 12, 14, 16, 18, 20, 22, 24 | fourierdlem108 43736 |
. 2
⊢ ((𝜑 ∧ 0 < 𝑋) → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
26 | | oveq2 7275 |
. . . . . . 7
⊢ (𝑋 = 0 → (𝐴 − 𝑋) = (𝐴 − 0)) |
27 | 1 | recnd 11013 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
28 | 27 | subid1d 11331 |
. . . . . . 7
⊢ (𝜑 → (𝐴 − 0) = 𝐴) |
29 | 26, 28 | sylan9eqr 2800 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 0) → (𝐴 − 𝑋) = 𝐴) |
30 | | oveq2 7275 |
. . . . . . 7
⊢ (𝑋 = 0 → (𝐵 − 𝑋) = (𝐵 − 0)) |
31 | 3 | recnd 11013 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℂ) |
32 | 31 | subid1d 11331 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 0) = 𝐵) |
33 | 30, 32 | sylan9eqr 2800 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 0) → (𝐵 − 𝑋) = 𝐵) |
34 | 29, 33 | oveq12d 7285 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 0) → ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) = (𝐴[,]𝐵)) |
35 | 34 | itgeq1d 43479 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = 0) → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
36 | 35 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ ¬ 0 < 𝑋) ∧ 𝑋 = 0) → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
37 | | simpll 764 |
. . . 4
⊢ (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝜑) |
38 | 37, 6 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ) |
39 | | 0red 10988 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 0 ∈
ℝ) |
40 | | simpr 485 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ¬ 𝑋 = 0) |
41 | 40 | neqned 2950 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 ≠ 0) |
42 | | simplr 766 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ¬ 0 < 𝑋) |
43 | 38, 39, 41, 42 | lttri5d 42819 |
. . . 4
⊢ (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 < 0) |
44 | 6 | recnd 11013 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ ℂ) |
45 | 27, 44 | subcld 11342 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 − 𝑋) ∈ ℂ) |
46 | 45, 44 | subnegd 11349 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 − 𝑋) − -𝑋) = ((𝐴 − 𝑋) + 𝑋)) |
47 | 27, 44 | npcand 11346 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 − 𝑋) + 𝑋) = 𝐴) |
48 | 46, 47 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 − 𝑋) − -𝑋) = 𝐴) |
49 | 31, 44 | subcld 11342 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℂ) |
50 | 49, 44 | subnegd 11349 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐵 − 𝑋) − -𝑋) = ((𝐵 − 𝑋) + 𝑋)) |
51 | 31, 44 | npcand 11346 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐵 − 𝑋) + 𝑋) = 𝐵) |
52 | 50, 51 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐵 − 𝑋) − -𝑋) = 𝐵) |
53 | 48, 52 | oveq12d 7285 |
. . . . . . . 8
⊢ (𝜑 → (((𝐴 − 𝑋) − -𝑋)[,]((𝐵 − 𝑋) − -𝑋)) = (𝐴[,]𝐵)) |
54 | 53 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → (𝐴[,]𝐵) = (((𝐴 − 𝑋) − -𝑋)[,]((𝐵 − 𝑋) − -𝑋))) |
55 | 54 | itgeq1d 43479 |
. . . . . 6
⊢ (𝜑 → ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 = ∫(((𝐴 − 𝑋) − -𝑋)[,]((𝐵 − 𝑋) − -𝑋))(𝐹‘𝑥) d𝑥) |
56 | 55 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 < 0) → ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 = ∫(((𝐴 − 𝑋) − -𝑋)[,]((𝐵 − 𝑋) − -𝑋))(𝐹‘𝑥) d𝑥) |
57 | 1, 6 | resubcld 11413 |
. . . . . . 7
⊢ (𝜑 → (𝐴 − 𝑋) ∈ ℝ) |
58 | 57 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 < 0) → (𝐴 − 𝑋) ∈ ℝ) |
59 | 3, 6 | resubcld 11413 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℝ) |
60 | 59 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 < 0) → (𝐵 − 𝑋) ∈ ℝ) |
61 | | eqid 2738 |
. . . . . 6
⊢ ((𝐵 − 𝑋) − (𝐴 − 𝑋)) = ((𝐵 − 𝑋) − (𝐴 − 𝑋)) |
62 | 6 | renegcld 11412 |
. . . . . . . 8
⊢ (𝜑 → -𝑋 ∈ ℝ) |
63 | 62 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 < 0) → -𝑋 ∈ ℝ) |
64 | 6 | lt0neg1d 11554 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 < 0 ↔ 0 < -𝑋)) |
65 | 64 | biimpa 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 < 0) → 0 < -𝑋) |
66 | 63, 65 | elrpd 12779 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 < 0) → -𝑋 ∈
ℝ+) |
67 | | fourierdlem109.o |
. . . . . . 7
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
68 | | fveq2 6766 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑝‘𝑖) = (𝑝‘𝑗)) |
69 | | oveq1 7274 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1)) |
70 | 69 | fveq2d 6770 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1))) |
71 | 68, 70 | breq12d 5086 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → ((𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))) |
72 | 71 | cbvralvw 3380 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
(0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1))) |
73 | 72 | anbi2i 623 |
. . . . . . . . . 10
⊢ ((((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))) |
74 | 73 | a1i 11 |
. . . . . . . . 9
⊢ (𝑝 ∈ (ℝ
↑m (0...𝑚))
→ ((((𝑝‘0) =
(𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1))))) |
75 | 74 | rabbiia 3404 |
. . . . . . . 8
⊢ {𝑝 ∈ (ℝ
↑m (0...𝑚))
∣ (((𝑝‘0) =
(𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))} |
76 | 75 | mpteq2i 5178 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ
↑m (0...𝑚))
∣ (((𝑝‘0) =
(𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))}) |
77 | 67, 76 | eqtri 2766 |
. . . . . 6
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))}) |
78 | 10, 11, 13 | fourierdlem11 43640 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) |
79 | 78 | simp3d 1143 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 < 𝐵) |
80 | 1, 3, 6, 79 | ltsub1dd 11597 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 − 𝑋) < (𝐵 − 𝑋)) |
81 | | fourierdlem109.h |
. . . . . . . . . 10
⊢ 𝐻 = ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
82 | | fourierdlem109.n |
. . . . . . . . . 10
⊢ 𝑁 = ((♯‘𝐻) − 1) |
83 | | fourierdlem109.16 |
. . . . . . . . . 10
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) |
84 | 5, 10, 11, 13, 57, 59, 80, 67, 81, 82, 83 | fourierdlem54 43682 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻))) |
85 | 84 | simpld 495 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁))) |
86 | 85 | simpld 495 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
87 | 86 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 < 0) → 𝑁 ∈ ℕ) |
88 | 85 | simprd 496 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ (𝑂‘𝑁)) |
89 | 88 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 < 0) → 𝑆 ∈ (𝑂‘𝑁)) |
90 | 15 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 < 0) → 𝐹:ℝ⟶ℂ) |
91 | 31, 27, 44 | nnncan2d 11377 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐵 − 𝑋) − (𝐴 − 𝑋)) = (𝐵 − 𝐴)) |
92 | 91, 5 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐵 − 𝑋) − (𝐴 − 𝑋)) = 𝑇) |
93 | 92 | oveq2d 7283 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 + ((𝐵 − 𝑋) − (𝐴 − 𝑋))) = (𝑥 + 𝑇)) |
94 | 93 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 + ((𝐵 − 𝑋) − (𝐴 − 𝑋))) = (𝑥 + 𝑇)) |
95 | 94 | fveq2d 6770 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵 − 𝑋) − (𝐴 − 𝑋)))) = (𝐹‘(𝑥 + 𝑇))) |
96 | 95, 17 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵 − 𝑋) − (𝐴 − 𝑋)))) = (𝐹‘𝑥)) |
97 | 96 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 < 0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵 − 𝑋) − (𝐴 − 𝑋)))) = (𝐹‘𝑥)) |
98 | 11 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ) |
99 | 13 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃‘𝑀)) |
100 | 15 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ) |
101 | 17 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
102 | 19 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
103 | 57 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 − 𝑋) ∈ ℝ) |
104 | 57 | rexrd 11035 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 − 𝑋) ∈
ℝ*) |
105 | | pnfxr 11039 |
. . . . . . . . . . 11
⊢ +∞
∈ ℝ* |
106 | 105 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → +∞ ∈
ℝ*) |
107 | 59 | ltpnfd 12867 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 − 𝑋) < +∞) |
108 | 104, 106,
59, 80, 107 | eliood 43017 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ((𝐴 − 𝑋)(,)+∞)) |
109 | 108 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐵 − 𝑋) ∈ ((𝐴 − 𝑋)(,)+∞)) |
110 | | oveq1 7274 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇))) |
111 | 110 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
112 | 111 | rexbidv 3224 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
113 | 112 | cbvrabv 3423 |
. . . . . . . . . 10
⊢ {𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} |
114 | 113 | uneq2i 4093 |
. . . . . . . . 9
⊢ ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
115 | 81, 114 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐻 = ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
116 | | fourierdlem109.17 |
. . . . . . . 8
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
117 | | fourierdlem109.18 |
. . . . . . . 8
⊢ 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) |
118 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁)) |
119 | | eqid 2738 |
. . . . . . . 8
⊢ ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) |
120 | | eqid 2738 |
. . . . . . . 8
⊢ (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) |
121 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆‘𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆‘𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) |
122 | | fourierdlem109.19 |
. . . . . . . . 9
⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ (𝐽‘(𝐸‘𝑥))}, ℝ, < )) |
123 | | fveq2 6766 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (𝑄‘𝑗) = (𝑄‘𝑖)) |
124 | 123 | breq1d 5083 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → ((𝑄‘𝑗) ≤ (𝐽‘(𝐸‘𝑥)) ↔ (𝑄‘𝑖) ≤ (𝐽‘(𝐸‘𝑥)))) |
125 | 124 | cbvrabv 3423 |
. . . . . . . . . . 11
⊢ {𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ (𝐽‘(𝐸‘𝑥))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐽‘(𝐸‘𝑥))} |
126 | 125 | supeq1i 9193 |
. . . . . . . . . 10
⊢
sup({𝑗 ∈
(0..^𝑀) ∣ (𝑄‘𝑗) ≤ (𝐽‘(𝐸‘𝑥))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐽‘(𝐸‘𝑥))}, ℝ, < ) |
127 | 126 | mpteq2i 5178 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ ↦
sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ (𝐽‘(𝐸‘𝑥))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐽‘(𝐸‘𝑥))}, ℝ, < )) |
128 | 122, 127 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐽‘(𝐸‘𝑥))}, ℝ, < )) |
129 | 10, 5, 98, 99, 100, 101, 102, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 120, 121, 128 | fourierdlem90 43718 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
130 | 129 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
131 | 21 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
132 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅) |
133 | 10, 5, 98, 99, 100, 101, 102, 131, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 128, 132 | fourierdlem89 43717 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆‘𝑗))) = (𝑄‘(𝐼‘(𝑆‘𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆‘𝑗))))) ∈ ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) |
134 | 133 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆‘𝑗))) = (𝑄‘(𝐼‘(𝑆‘𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆‘𝑗))))) ∈ ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) |
135 | 23 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
136 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿) |
137 | 10, 5, 98, 99, 100, 101, 102, 135, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 128, 136 | fourierdlem91 43719 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) |
138 | 137 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) |
139 | 58, 60, 61, 66, 77, 87, 89, 90, 97, 130, 134, 138 | fourierdlem108 43736 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 < 0) → ∫(((𝐴 − 𝑋) − -𝑋)[,]((𝐵 − 𝑋) − -𝑋))(𝐹‘𝑥) d𝑥 = ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥) |
140 | 56, 139 | eqtr2d 2779 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 < 0) → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
141 | 37, 43, 140 | syl2anc 584 |
. . 3
⊢ (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
142 | 36, 141 | pm2.61dan 810 |
. 2
⊢ ((𝜑 ∧ ¬ 0 < 𝑋) → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
143 | 25, 142 | pm2.61dan 810 |
1
⊢ (𝜑 → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |