Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem109 Structured version   Visualization version   GIF version

Theorem fourierdlem109 42520
Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any value 𝑋. This lemma generalizes fourierdlem92 42503 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem109.a (𝜑𝐴 ∈ ℝ)
fourierdlem109.b (𝜑𝐵 ∈ ℝ)
fourierdlem109.t 𝑇 = (𝐵𝐴)
fourierdlem109.x (𝜑𝑋 ∈ ℝ)
fourierdlem109.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem109.m (𝜑𝑀 ∈ ℕ)
fourierdlem109.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem109.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem109.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem109.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem109.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem109.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem109.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem109.h 𝐻 = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem109.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem109.16 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem109.17 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem109.18 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem109.19 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem109 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑓,𝑗,𝑘,𝑦   𝐴,𝑖,𝑥,𝑗,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖,𝑗   𝐵,𝑓,𝑗,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑓,𝐸,𝑗,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑗,𝑥,𝑦   𝑓,𝐻,𝑦   𝑥,𝐻   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑖,𝐽,𝑗,𝑥,𝑦   𝑥,𝐿,𝑦   𝑖,𝑀,𝑥,𝑦,𝑗   𝑚,𝑀,𝑝   𝑓,𝑁,𝑗,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑗,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅,𝑦   𝑆,𝑓,𝑗,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑚,𝑝   𝑇,𝑓,𝑗,𝑘,𝑦   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑓,𝑋,𝑗,𝑦   𝑖,𝑋,𝑚,𝑝   𝑥,𝑋   𝜑,𝑓,𝑗,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝑅(𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑝)   𝐼(𝑗,𝑚,𝑝)   𝐽(𝑓,𝑘,𝑚,𝑝)   𝐿(𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝑀(𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝑋(𝑘)

Proof of Theorem fourierdlem109
StepHypRef Expression
1 fourierdlem109.a . . . 4 (𝜑𝐴 ∈ ℝ)
21adantr 483 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝐴 ∈ ℝ)
3 fourierdlem109.b . . . 4 (𝜑𝐵 ∈ ℝ)
43adantr 483 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝐵 ∈ ℝ)
5 fourierdlem109.t . . 3 𝑇 = (𝐵𝐴)
6 fourierdlem109.x . . . . 5 (𝜑𝑋 ∈ ℝ)
76adantr 483 . . . 4 ((𝜑 ∧ 0 < 𝑋) → 𝑋 ∈ ℝ)
8 simpr 487 . . . 4 ((𝜑 ∧ 0 < 𝑋) → 0 < 𝑋)
97, 8elrpd 12429 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝑋 ∈ ℝ+)
10 fourierdlem109.p . . 3 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
11 fourierdlem109.m . . . 4 (𝜑𝑀 ∈ ℕ)
1211adantr 483 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝑀 ∈ ℕ)
13 fourierdlem109.q . . . 4 (𝜑𝑄 ∈ (𝑃𝑀))
1413adantr 483 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝑄 ∈ (𝑃𝑀))
15 fourierdlem109.f . . . 4 (𝜑𝐹:ℝ⟶ℂ)
1615adantr 483 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝐹:ℝ⟶ℂ)
17 fourierdlem109.fper . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
1817adantlr 713 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
19 fourierdlem109.fcn . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
2019adantlr 713 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
21 fourierdlem109.r . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
2221adantlr 713 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
23 fourierdlem109.l . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2423adantlr 713 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
252, 4, 5, 9, 10, 12, 14, 16, 18, 20, 22, 24fourierdlem108 42519 . 2 ((𝜑 ∧ 0 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
26 oveq2 7164 . . . . . . 7 (𝑋 = 0 → (𝐴𝑋) = (𝐴 − 0))
271recnd 10669 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
2827subid1d 10986 . . . . . . 7 (𝜑 → (𝐴 − 0) = 𝐴)
2926, 28sylan9eqr 2878 . . . . . 6 ((𝜑𝑋 = 0) → (𝐴𝑋) = 𝐴)
30 oveq2 7164 . . . . . . 7 (𝑋 = 0 → (𝐵𝑋) = (𝐵 − 0))
313recnd 10669 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3231subid1d 10986 . . . . . . 7 (𝜑 → (𝐵 − 0) = 𝐵)
3330, 32sylan9eqr 2878 . . . . . 6 ((𝜑𝑋 = 0) → (𝐵𝑋) = 𝐵)
3429, 33oveq12d 7174 . . . . 5 ((𝜑𝑋 = 0) → ((𝐴𝑋)[,](𝐵𝑋)) = (𝐴[,]𝐵))
3534itgeq1d 42262 . . . 4 ((𝜑𝑋 = 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
3635adantlr 713 . . 3 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ 𝑋 = 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
37 simpll 765 . . . 4 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝜑)
3837, 6syl 17 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ)
39 0red 10644 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 0 ∈ ℝ)
40 simpr 487 . . . . . 6 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ¬ 𝑋 = 0)
4140neqned 3023 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 ≠ 0)
42 simplr 767 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ¬ 0 < 𝑋)
4338, 39, 41, 42lttri5d 41586 . . . 4 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 < 0)
446recnd 10669 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℂ)
4527, 44subcld 10997 . . . . . . . . . . 11 (𝜑 → (𝐴𝑋) ∈ ℂ)
4645, 44subnegd 11004 . . . . . . . . . 10 (𝜑 → ((𝐴𝑋) − -𝑋) = ((𝐴𝑋) + 𝑋))
4727, 44npcand 11001 . . . . . . . . . 10 (𝜑 → ((𝐴𝑋) + 𝑋) = 𝐴)
4846, 47eqtrd 2856 . . . . . . . . 9 (𝜑 → ((𝐴𝑋) − -𝑋) = 𝐴)
4931, 44subcld 10997 . . . . . . . . . . 11 (𝜑 → (𝐵𝑋) ∈ ℂ)
5049, 44subnegd 11004 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) − -𝑋) = ((𝐵𝑋) + 𝑋))
5131, 44npcand 11001 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) + 𝑋) = 𝐵)
5250, 51eqtrd 2856 . . . . . . . . 9 (𝜑 → ((𝐵𝑋) − -𝑋) = 𝐵)
5348, 52oveq12d 7174 . . . . . . . 8 (𝜑 → (((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋)) = (𝐴[,]𝐵))
5453eqcomd 2827 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) = (((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋)))
5554itgeq1d 42262 . . . . . 6 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋))(𝐹𝑥) d𝑥)
5655adantr 483 . . . . 5 ((𝜑𝑋 < 0) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋))(𝐹𝑥) d𝑥)
571, 6resubcld 11068 . . . . . . 7 (𝜑 → (𝐴𝑋) ∈ ℝ)
5857adantr 483 . . . . . 6 ((𝜑𝑋 < 0) → (𝐴𝑋) ∈ ℝ)
593, 6resubcld 11068 . . . . . . 7 (𝜑 → (𝐵𝑋) ∈ ℝ)
6059adantr 483 . . . . . 6 ((𝜑𝑋 < 0) → (𝐵𝑋) ∈ ℝ)
61 eqid 2821 . . . . . 6 ((𝐵𝑋) − (𝐴𝑋)) = ((𝐵𝑋) − (𝐴𝑋))
626renegcld 11067 . . . . . . . 8 (𝜑 → -𝑋 ∈ ℝ)
6362adantr 483 . . . . . . 7 ((𝜑𝑋 < 0) → -𝑋 ∈ ℝ)
646lt0neg1d 11209 . . . . . . . 8 (𝜑 → (𝑋 < 0 ↔ 0 < -𝑋))
6564biimpa 479 . . . . . . 7 ((𝜑𝑋 < 0) → 0 < -𝑋)
6663, 65elrpd 12429 . . . . . 6 ((𝜑𝑋 < 0) → -𝑋 ∈ ℝ+)
67 fourierdlem109.o . . . . . . 7 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
68 fveq2 6670 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
69 oveq1 7163 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
7069fveq2d 6674 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
7168, 70breq12d 5079 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
7271cbvralvw 3449 . . . . . . . . . . 11 (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
7372anbi2i 624 . . . . . . . . . 10 ((((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
7473a1i 11 . . . . . . . . 9 (𝑝 ∈ (ℝ ↑m (0...𝑚)) → ((((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
7574rabbiia 3472 . . . . . . . 8 {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}
7675mpteq2i 5158 . . . . . . 7 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
7767, 76eqtri 2844 . . . . . 6 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
7810, 11, 13fourierdlem11 42423 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
7978simp3d 1140 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
801, 3, 6, 79ltsub1dd 11252 . . . . . . . . . 10 (𝜑 → (𝐴𝑋) < (𝐵𝑋))
81 fourierdlem109.h . . . . . . . . . 10 𝐻 = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
82 fourierdlem109.n . . . . . . . . . 10 𝑁 = ((♯‘𝐻) − 1)
83 fourierdlem109.16 . . . . . . . . . 10 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
845, 10, 11, 13, 57, 59, 80, 67, 81, 82, 83fourierdlem54 42465 . . . . . . . . 9 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
8584simpld 497 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
8685simpld 497 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
8786adantr 483 . . . . . 6 ((𝜑𝑋 < 0) → 𝑁 ∈ ℕ)
8885simprd 498 . . . . . . 7 (𝜑𝑆 ∈ (𝑂𝑁))
8988adantr 483 . . . . . 6 ((𝜑𝑋 < 0) → 𝑆 ∈ (𝑂𝑁))
9015adantr 483 . . . . . 6 ((𝜑𝑋 < 0) → 𝐹:ℝ⟶ℂ)
9131, 27, 44nnncan2d 11032 . . . . . . . . . . . 12 (𝜑 → ((𝐵𝑋) − (𝐴𝑋)) = (𝐵𝐴))
9291, 5syl6eqr 2874 . . . . . . . . . . 11 (𝜑 → ((𝐵𝑋) − (𝐴𝑋)) = 𝑇)
9392oveq2d 7172 . . . . . . . . . 10 (𝜑 → (𝑥 + ((𝐵𝑋) − (𝐴𝑋))) = (𝑥 + 𝑇))
9493adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((𝐵𝑋) − (𝐴𝑋))) = (𝑥 + 𝑇))
9594fveq2d 6674 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵𝑋) − (𝐴𝑋)))) = (𝐹‘(𝑥 + 𝑇)))
9695, 17eqtrd 2856 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵𝑋) − (𝐴𝑋)))) = (𝐹𝑥))
9796adantlr 713 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵𝑋) − (𝐴𝑋)))) = (𝐹𝑥))
9811adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
9913adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
10015adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
10117adantlr 713 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
10219adantlr 713 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
10357adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) ∈ ℝ)
10457rexrd 10691 . . . . . . . . . 10 (𝜑 → (𝐴𝑋) ∈ ℝ*)
105 pnfxr 10695 . . . . . . . . . . 11 +∞ ∈ ℝ*
106105a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
10759ltpnfd 12517 . . . . . . . . . 10 (𝜑 → (𝐵𝑋) < +∞)
108104, 106, 59, 80, 107eliood 41793 . . . . . . . . 9 (𝜑 → (𝐵𝑋) ∈ ((𝐴𝑋)(,)+∞))
109108adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐵𝑋) ∈ ((𝐴𝑋)(,)+∞))
110 oveq1 7163 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
111110eleq1d 2897 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
112111rexbidv 3297 . . . . . . . . . . 11 (𝑥 = 𝑦 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
113112cbvrabv 3491 . . . . . . . . . 10 {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}
114113uneq2i 4136 . . . . . . . . 9 ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
11581, 114eqtri 2844 . . . . . . . 8 𝐻 = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
116 fourierdlem109.17 . . . . . . . 8 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
117 fourierdlem109.18 . . . . . . . 8 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
118 simpr 487 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
119 eqid 2821 . . . . . . . 8 ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))
120 eqid 2821 . . . . . . . 8 (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))
121 eqid 2821 . . . . . . . 8 (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))))
122 fourierdlem109.19 . . . . . . . . 9 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
123 fveq2 6670 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
124123breq1d 5076 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑄𝑗) ≤ (𝐽‘(𝐸𝑥)) ↔ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))))
125124cbvrabv 3491 . . . . . . . . . . 11 {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}
126125supeq1i 8911 . . . . . . . . . 10 sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < )
127126mpteq2i 5158 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
128122, 127eqtri 2844 . . . . . . . 8 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
12910, 5, 98, 99, 100, 101, 102, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 120, 121, 128fourierdlem90 42501 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
130129adantlr 713 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
13121adantlr 713 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
132 eqid 2821 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
13310, 5, 98, 99, 100, 101, 102, 131, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 128, 132fourierdlem89 42500 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
134133adantlr 713 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
13523adantlr 713 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
136 eqid 2821 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
13710, 5, 98, 99, 100, 101, 102, 135, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 128, 136fourierdlem91 42502 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
138137adantlr 713 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
13958, 60, 61, 66, 77, 87, 89, 90, 97, 130, 134, 138fourierdlem108 42519 . . . . 5 ((𝜑𝑋 < 0) → ∫(((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋))(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥)
14056, 139eqtr2d 2857 . . . 4 ((𝜑𝑋 < 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
14137, 43, 140syl2anc 586 . . 3 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
14236, 141pm2.61dan 811 . 2 ((𝜑 ∧ ¬ 0 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
14325, 142pm2.61dan 811 1 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  {crab 3142  cun 3934  ifcif 4467  {cpr 4569   class class class wbr 5066  cmpt 5146  ran crn 5556  cres 5557  cio 6312  wf 6351  cfv 6355   Isom wiso 6356  (class class class)co 7156  m cmap 8406  supcsup 8904  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  cz 11982  (,)cioo 12739  (,]cioc 12740  [,]cicc 12742  ...cfz 12893  ..^cfzo 13034  cfl 13161  chash 13691  cnccncf 23484  citg 24219   lim climc 24460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-symdif 4219  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-itg 24224  df-0p 24271  df-ditg 24445  df-limc 24464  df-dv 24465
This theorem is referenced by:  fourierdlem110  42521
  Copyright terms: Public domain W3C validator