Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem109 Structured version   Visualization version   GIF version

Theorem fourierdlem109 40949
Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any value 𝑋. This lemma generalizes fourierdlem92 40932 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem109.a (𝜑𝐴 ∈ ℝ)
fourierdlem109.b (𝜑𝐵 ∈ ℝ)
fourierdlem109.t 𝑇 = (𝐵𝐴)
fourierdlem109.x (𝜑𝑋 ∈ ℝ)
fourierdlem109.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem109.m (𝜑𝑀 ∈ ℕ)
fourierdlem109.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem109.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem109.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem109.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem109.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem109.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem109.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem109.h 𝐻 = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem109.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem109.16 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem109.17 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem109.18 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem109.19 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem109 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑓,𝑗,𝑘,𝑦   𝐴,𝑖,𝑥,𝑗,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖,𝑗   𝐵,𝑓,𝑗,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑓,𝐸,𝑗,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑗,𝑥,𝑦   𝑓,𝐻,𝑦   𝑥,𝐻   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑖,𝐽,𝑗,𝑥,𝑦   𝑥,𝐿,𝑦   𝑖,𝑀,𝑥,𝑦,𝑗   𝑚,𝑀,𝑝   𝑓,𝑁,𝑗,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑗,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅,𝑦   𝑆,𝑓,𝑗,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑚,𝑝   𝑇,𝑓,𝑗,𝑘,𝑦   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑓,𝑋,𝑗,𝑦   𝑖,𝑋,𝑚,𝑝   𝑥,𝑋   𝜑,𝑓,𝑗,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝑅(𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑝)   𝐼(𝑗,𝑚,𝑝)   𝐽(𝑓,𝑘,𝑚,𝑝)   𝐿(𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝑀(𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝑋(𝑘)

Proof of Theorem fourierdlem109
StepHypRef Expression
1 fourierdlem109.a . . . 4 (𝜑𝐴 ∈ ℝ)
21adantr 466 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝐴 ∈ ℝ)
3 fourierdlem109.b . . . 4 (𝜑𝐵 ∈ ℝ)
43adantr 466 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝐵 ∈ ℝ)
5 fourierdlem109.t . . 3 𝑇 = (𝐵𝐴)
6 fourierdlem109.x . . . . 5 (𝜑𝑋 ∈ ℝ)
76adantr 466 . . . 4 ((𝜑 ∧ 0 < 𝑋) → 𝑋 ∈ ℝ)
8 simpr 471 . . . 4 ((𝜑 ∧ 0 < 𝑋) → 0 < 𝑋)
97, 8elrpd 12072 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝑋 ∈ ℝ+)
10 fourierdlem109.p . . 3 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
11 fourierdlem109.m . . . 4 (𝜑𝑀 ∈ ℕ)
1211adantr 466 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝑀 ∈ ℕ)
13 fourierdlem109.q . . . 4 (𝜑𝑄 ∈ (𝑃𝑀))
1413adantr 466 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝑄 ∈ (𝑃𝑀))
15 fourierdlem109.f . . . 4 (𝜑𝐹:ℝ⟶ℂ)
1615adantr 466 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝐹:ℝ⟶ℂ)
17 fourierdlem109.fper . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
1817adantlr 694 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
19 fourierdlem109.fcn . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
2019adantlr 694 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
21 fourierdlem109.r . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
2221adantlr 694 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
23 fourierdlem109.l . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2423adantlr 694 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
252, 4, 5, 9, 10, 12, 14, 16, 18, 20, 22, 24fourierdlem108 40948 . 2 ((𝜑 ∧ 0 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
26 oveq2 6801 . . . . . . 7 (𝑋 = 0 → (𝐴𝑋) = (𝐴 − 0))
271recnd 10270 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
2827subid1d 10583 . . . . . . 7 (𝜑 → (𝐴 − 0) = 𝐴)
2926, 28sylan9eqr 2827 . . . . . 6 ((𝜑𝑋 = 0) → (𝐴𝑋) = 𝐴)
30 oveq2 6801 . . . . . . 7 (𝑋 = 0 → (𝐵𝑋) = (𝐵 − 0))
313recnd 10270 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3231subid1d 10583 . . . . . . 7 (𝜑 → (𝐵 − 0) = 𝐵)
3330, 32sylan9eqr 2827 . . . . . 6 ((𝜑𝑋 = 0) → (𝐵𝑋) = 𝐵)
3429, 33oveq12d 6811 . . . . 5 ((𝜑𝑋 = 0) → ((𝐴𝑋)[,](𝐵𝑋)) = (𝐴[,]𝐵))
3534itgeq1d 40690 . . . 4 ((𝜑𝑋 = 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
3635adantlr 694 . . 3 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ 𝑋 = 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
37 simpll 750 . . . 4 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝜑)
3837, 6syl 17 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ)
39 0red 10243 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 0 ∈ ℝ)
40 simpr 471 . . . . . 6 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ¬ 𝑋 = 0)
4140neqned 2950 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 ≠ 0)
42 simplr 752 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ¬ 0 < 𝑋)
4338, 39, 41, 42lttri5d 40030 . . . 4 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 < 0)
446recnd 10270 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℂ)
4527, 44subcld 10594 . . . . . . . . . . 11 (𝜑 → (𝐴𝑋) ∈ ℂ)
4645, 44subnegd 10601 . . . . . . . . . 10 (𝜑 → ((𝐴𝑋) − -𝑋) = ((𝐴𝑋) + 𝑋))
4727, 44npcand 10598 . . . . . . . . . 10 (𝜑 → ((𝐴𝑋) + 𝑋) = 𝐴)
4846, 47eqtrd 2805 . . . . . . . . 9 (𝜑 → ((𝐴𝑋) − -𝑋) = 𝐴)
4931, 44subcld 10594 . . . . . . . . . . 11 (𝜑 → (𝐵𝑋) ∈ ℂ)
5049, 44subnegd 10601 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) − -𝑋) = ((𝐵𝑋) + 𝑋))
5131, 44npcand 10598 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) + 𝑋) = 𝐵)
5250, 51eqtrd 2805 . . . . . . . . 9 (𝜑 → ((𝐵𝑋) − -𝑋) = 𝐵)
5348, 52oveq12d 6811 . . . . . . . 8 (𝜑 → (((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋)) = (𝐴[,]𝐵))
5453eqcomd 2777 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) = (((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋)))
5554itgeq1d 40690 . . . . . 6 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋))(𝐹𝑥) d𝑥)
5655adantr 466 . . . . 5 ((𝜑𝑋 < 0) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋))(𝐹𝑥) d𝑥)
571, 6resubcld 10660 . . . . . . 7 (𝜑 → (𝐴𝑋) ∈ ℝ)
5857adantr 466 . . . . . 6 ((𝜑𝑋 < 0) → (𝐴𝑋) ∈ ℝ)
593, 6resubcld 10660 . . . . . . 7 (𝜑 → (𝐵𝑋) ∈ ℝ)
6059adantr 466 . . . . . 6 ((𝜑𝑋 < 0) → (𝐵𝑋) ∈ ℝ)
61 eqid 2771 . . . . . 6 ((𝐵𝑋) − (𝐴𝑋)) = ((𝐵𝑋) − (𝐴𝑋))
626renegcld 10659 . . . . . . . 8 (𝜑 → -𝑋 ∈ ℝ)
6362adantr 466 . . . . . . 7 ((𝜑𝑋 < 0) → -𝑋 ∈ ℝ)
646lt0neg1d 10799 . . . . . . . 8 (𝜑 → (𝑋 < 0 ↔ 0 < -𝑋))
6564biimpa 462 . . . . . . 7 ((𝜑𝑋 < 0) → 0 < -𝑋)
6663, 65elrpd 12072 . . . . . 6 ((𝜑𝑋 < 0) → -𝑋 ∈ ℝ+)
67 fourierdlem109.o . . . . . . 7 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
68 fveq2 6332 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
69 oveq1 6800 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
7069fveq2d 6336 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
7168, 70breq12d 4799 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
7271cbvralv 3320 . . . . . . . . . . 11 (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
7372anbi2i 609 . . . . . . . . . 10 ((((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
7473a1i 11 . . . . . . . . 9 (𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) → ((((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
7574rabbiia 3334 . . . . . . . 8 {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}
7675mpteq2i 4875 . . . . . . 7 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
7767, 76eqtri 2793 . . . . . 6 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
7810, 11, 13fourierdlem11 40852 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
7978simp3d 1138 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
801, 3, 6, 79ltsub1dd 10841 . . . . . . . . . 10 (𝜑 → (𝐴𝑋) < (𝐵𝑋))
81 fourierdlem109.h . . . . . . . . . 10 𝐻 = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
82 fourierdlem109.n . . . . . . . . . 10 𝑁 = ((♯‘𝐻) − 1)
83 fourierdlem109.16 . . . . . . . . . 10 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
845, 10, 11, 13, 57, 59, 80, 67, 81, 82, 83fourierdlem54 40894 . . . . . . . . 9 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
8584simpld 482 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
8685simpld 482 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
8786adantr 466 . . . . . 6 ((𝜑𝑋 < 0) → 𝑁 ∈ ℕ)
8885simprd 483 . . . . . . 7 (𝜑𝑆 ∈ (𝑂𝑁))
8988adantr 466 . . . . . 6 ((𝜑𝑋 < 0) → 𝑆 ∈ (𝑂𝑁))
9015adantr 466 . . . . . 6 ((𝜑𝑋 < 0) → 𝐹:ℝ⟶ℂ)
9131, 27, 44nnncan2d 10629 . . . . . . . . . . . 12 (𝜑 → ((𝐵𝑋) − (𝐴𝑋)) = (𝐵𝐴))
9291, 5syl6eqr 2823 . . . . . . . . . . 11 (𝜑 → ((𝐵𝑋) − (𝐴𝑋)) = 𝑇)
9392oveq2d 6809 . . . . . . . . . 10 (𝜑 → (𝑥 + ((𝐵𝑋) − (𝐴𝑋))) = (𝑥 + 𝑇))
9493adantr 466 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((𝐵𝑋) − (𝐴𝑋))) = (𝑥 + 𝑇))
9594fveq2d 6336 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵𝑋) − (𝐴𝑋)))) = (𝐹‘(𝑥 + 𝑇)))
9695, 17eqtrd 2805 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵𝑋) − (𝐴𝑋)))) = (𝐹𝑥))
9796adantlr 694 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵𝑋) − (𝐴𝑋)))) = (𝐹𝑥))
9811adantr 466 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
9913adantr 466 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
10015adantr 466 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
10117adantlr 694 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
10219adantlr 694 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
10357adantr 466 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) ∈ ℝ)
10457rexrd 10291 . . . . . . . . . 10 (𝜑 → (𝐴𝑋) ∈ ℝ*)
105 pnfxr 10294 . . . . . . . . . . 11 +∞ ∈ ℝ*
106105a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
10759ltpnfd 12160 . . . . . . . . . 10 (𝜑 → (𝐵𝑋) < +∞)
108104, 106, 59, 80, 107eliood 40241 . . . . . . . . 9 (𝜑 → (𝐵𝑋) ∈ ((𝐴𝑋)(,)+∞))
109108adantr 466 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐵𝑋) ∈ ((𝐴𝑋)(,)+∞))
110 oveq1 6800 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
111110eleq1d 2835 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
112111rexbidv 3200 . . . . . . . . . . 11 (𝑥 = 𝑦 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
113112cbvrabv 3349 . . . . . . . . . 10 {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}
114113uneq2i 3915 . . . . . . . . 9 ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
11581, 114eqtri 2793 . . . . . . . 8 𝐻 = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
116 fourierdlem109.17 . . . . . . . 8 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
117 fourierdlem109.18 . . . . . . . 8 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
118 simpr 471 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
119 eqid 2771 . . . . . . . 8 ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))
120 eqid 2771 . . . . . . . 8 (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))
121 eqid 2771 . . . . . . . 8 (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))))
122 fourierdlem109.19 . . . . . . . . 9 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
123 fveq2 6332 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
124123breq1d 4796 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑄𝑗) ≤ (𝐽‘(𝐸𝑥)) ↔ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))))
125124cbvrabv 3349 . . . . . . . . . . 11 {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}
126125supeq1i 8509 . . . . . . . . . 10 sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < )
127126mpteq2i 4875 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
128122, 127eqtri 2793 . . . . . . . 8 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
12910, 5, 98, 99, 100, 101, 102, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 120, 121, 128fourierdlem90 40930 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
130129adantlr 694 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
13121adantlr 694 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
132 eqid 2771 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
13310, 5, 98, 99, 100, 101, 102, 131, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 128, 132fourierdlem89 40929 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
134133adantlr 694 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
13523adantlr 694 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
136 eqid 2771 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
13710, 5, 98, 99, 100, 101, 102, 135, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 128, 136fourierdlem91 40931 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
138137adantlr 694 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
13958, 60, 61, 66, 77, 87, 89, 90, 97, 130, 134, 138fourierdlem108 40948 . . . . 5 ((𝜑𝑋 < 0) → ∫(((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋))(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥)
14056, 139eqtr2d 2806 . . . 4 ((𝜑𝑋 < 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
14137, 43, 140syl2anc 573 . . 3 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
14236, 141pm2.61dan 813 . 2 ((𝜑 ∧ ¬ 0 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
14325, 142pm2.61dan 813 1 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  {crab 3065  cun 3721  ifcif 4225  {cpr 4318   class class class wbr 4786  cmpt 4863  ran crn 5250  cres 5251  cio 5992  wf 6027  cfv 6031   Isom wiso 6032  (class class class)co 6793  𝑚 cmap 8009  supcsup 8502  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  +∞cpnf 10273  *cxr 10275   < clt 10276  cle 10277  cmin 10468  -cneg 10469   / cdiv 10886  cn 11222  cz 11579  (,)cioo 12380  (,]cioc 12381  [,]cicc 12383  ...cfz 12533  ..^cfzo 12673  cfl 12799  chash 13321  cnccncf 22899  citg 23606   lim climc 23846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cc 9459  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-ofr 7045  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-acn 8968  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-xnn0 11566  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-ovol 23452  df-vol 23453  df-mbf 23607  df-itg1 23608  df-itg2 23609  df-ibl 23610  df-itg 23611  df-0p 23657  df-ditg 23831  df-limc 23850  df-dv 23851
This theorem is referenced by:  fourierdlem110  40950
  Copyright terms: Public domain W3C validator