Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem107 Structured version   Visualization version   GIF version

Theorem fourierdlem107 46194
Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 46179 where the integral was shifted by the exact period. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem107.a (𝜑𝐴 ∈ ℝ)
fourierdlem107.b (𝜑𝐵 ∈ ℝ)
fourierdlem107.t 𝑇 = (𝐵𝐴)
fourierdlem107.x (𝜑𝑋 ∈ ℝ+)
fourierdlem107.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem107.m (𝜑𝑀 ∈ ℕ)
fourierdlem107.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem107.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem107.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem107.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem107.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem107.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem107.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem107.h 𝐻 = ({(𝐴𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem107.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem107.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem107.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem107.z 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem107.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem107 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑓,𝑘,𝑦   𝐴,𝑖,𝑥,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖   𝐵,𝑓,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑓,𝐸,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑥,𝑦   𝑓,𝐻,𝑦   𝑥,𝐻   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑥,𝐿,𝑦   𝑖,𝑀,𝑥,𝑦   𝑚,𝑀,𝑝   𝑓,𝑁,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅,𝑦   𝑆,𝑓,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑝   𝑇,𝑓,𝑘,𝑦   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑓,𝑋,𝑦   𝑖,𝑋,𝑚,𝑝   𝑥,𝑋   𝑖,𝑍,𝑥,𝑦   𝜑,𝑓,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑅(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑆(𝑚)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑖,𝑘,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝐿(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑀(𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑋(𝑘)   𝑍(𝑓,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem107
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem107.t . . . . . . . . . . . . . . . . 17 𝑇 = (𝐵𝐴)
21oveq2i 7360 . . . . . . . . . . . . . . . 16 ((𝐴𝑋) + 𝑇) = ((𝐴𝑋) + (𝐵𝐴))
3 fourierdlem107.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ)
43recnd 11143 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℂ)
5 fourierdlem107.x . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ ℝ+)
65rpred 12937 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
76recnd 11143 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ℂ)
8 fourierdlem107.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ)
98recnd 11143 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℂ)
104, 7, 9, 4subadd4b 45265 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴𝑋) + (𝐵𝐴)) = ((𝐴𝐴) + (𝐵𝑋)))
112, 10eqtrid 2776 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝑋) + 𝑇) = ((𝐴𝐴) + (𝐵𝑋)))
124subidd 11463 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝐴) = 0)
1312oveq1d 7364 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐴) + (𝐵𝑋)) = (0 + (𝐵𝑋)))
148, 6resubcld 11548 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑋) ∈ ℝ)
1514recnd 11143 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝑋) ∈ ℂ)
1615addlidd 11317 . . . . . . . . . . . . . . 15 (𝜑 → (0 + (𝐵𝑋)) = (𝐵𝑋))
1711, 13, 163eqtrd 2768 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝑋) + 𝑇) = (𝐵𝑋))
181oveq2i 7360 . . . . . . . . . . . . . . 15 (𝐴 + 𝑇) = (𝐴 + (𝐵𝐴))
194, 9pncan3d 11478 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
2018, 19eqtrid 2776 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑇) = 𝐵)
2117, 20oveq12d 7367 . . . . . . . . . . . . 13 (𝜑 → (((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇)) = ((𝐵𝑋)[,]𝐵))
2221eqcomd 2735 . . . . . . . . . . . 12 (𝜑 → ((𝐵𝑋)[,]𝐵) = (((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇)))
2322itgeq1d 45938 . . . . . . . . . . 11 (𝜑 → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇))(𝐹𝑥) d𝑥)
243, 6resubcld 11548 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑋) ∈ ℝ)
25 fourierdlem107.o . . . . . . . . . . . . 13 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
26 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
27 oveq1 7356 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
2827fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
2926, 28breq12d 5105 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
3029cbvralvw 3207 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
3130a1i 11 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
3231anbi2d 630 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → ((((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
3332rabbidv 3402 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
3433mpteq2ia 5187 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
3525, 34eqtri 2752 . . . . . . . . . . . 12 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
36 fourierdlem107.p . . . . . . . . . . . . . . 15 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
37 fourierdlem107.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
38 fourierdlem107.q . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ (𝑃𝑀))
393, 5ltsubrpd 12969 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑋) < 𝐴)
40 fourierdlem107.h . . . . . . . . . . . . . . 15 𝐻 = ({(𝐴𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
41 fourierdlem107.n . . . . . . . . . . . . . . 15 𝑁 = ((♯‘𝐻) − 1)
42 fourierdlem107.s . . . . . . . . . . . . . . 15 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
431, 36, 37, 38, 24, 3, 39, 25, 40, 41, 42fourierdlem54 46141 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
4443simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
4544simpld 494 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
468, 3resubcld 11548 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℝ)
471, 46eqeltrid 2832 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
4844simprd 495 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (𝑂𝑁))
4924adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐴𝑋) ∈ ℝ)
503adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝐴 ∈ ℝ)
51 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝑥 ∈ ((𝐴𝑋)[,]𝐴))
52 eliccre 45486 . . . . . . . . . . . . . 14 (((𝐴𝑋) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
5349, 50, 51, 52syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
54 fourierdlem107.fper . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
5553, 54syldan 591 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
56 fveq2 6822 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑆𝑖) = (𝑆𝑗))
5756oveq1d 7364 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝑆𝑖) + 𝑇) = ((𝑆𝑗) + 𝑇))
5857cbvmptv 5196 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑁) ↦ ((𝑆𝑖) + 𝑇)) = (𝑗 ∈ (0...𝑁) ↦ ((𝑆𝑗) + 𝑇))
59 eqid 2729 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = ((𝐴𝑋) + 𝑇) ∧ (𝑝𝑚) = (𝐴 + 𝑇)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = ((𝐴𝑋) + 𝑇) ∧ (𝑝𝑚) = (𝐴 + 𝑇)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
60 fourierdlem107.f . . . . . . . . . . . 12 (𝜑𝐹:ℝ⟶ℂ)
6137adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
6238adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
6360adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
6454adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
65 fourierdlem107.fcn . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
6665adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
6724adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) ∈ ℝ)
6867rexrd 11165 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) ∈ ℝ*)
69 pnfxr 11169 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
7069a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → +∞ ∈ ℝ*)
713adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ℝ)
7239adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) < 𝐴)
733ltpnfd 13023 . . . . . . . . . . . . . . 15 (𝜑𝐴 < +∞)
7473adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 < +∞)
7568, 70, 71, 72, 74eliood 45479 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ((𝐴𝑋)(,)+∞))
76 fourierdlem107.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
77 fourierdlem107.z . . . . . . . . . . . . 13 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
78 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
79 eqid 2729 . . . . . . . . . . . . 13 ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))
80 eqid 2729 . . . . . . . . . . . . 13 (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))
81 eqid 2729 . . . . . . . . . . . . 13 (𝑦 ∈ (((𝑍‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝑍‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))))
82 fourierdlem107.i . . . . . . . . . . . . 13 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
8336, 1, 61, 62, 63, 64, 66, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 80, 81, 82fourierdlem90 46177 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
84 fourierdlem107.r . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
8584adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
86 eqid 2729 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
8736, 1, 61, 62, 63, 64, 66, 85, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 82, 86fourierdlem89 46176 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝑍‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝑍‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
88 fourierdlem107.l . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
8988adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
90 eqid 2729 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
9136, 1, 61, 62, 63, 64, 66, 89, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 82, 90fourierdlem91 46178 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
9224, 3, 35, 45, 47, 48, 55, 58, 59, 60, 83, 87, 91fourierdlem92 46179 . . . . . . . . . . 11 (𝜑 → ∫(((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇))(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
9323, 92eqtrd 2764 . . . . . . . . . 10 (𝜑 → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
9460adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝐹:ℝ⟶ℂ)
9514adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → (𝐵𝑋) ∈ ℝ)
968adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝐵 ∈ ℝ)
97 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝑥 ∈ ((𝐵𝑋)[,]𝐵))
98 eliccre 45486 . . . . . . . . . . . . 13 (((𝐵𝑋) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝑥 ∈ ℝ)
9995, 96, 97, 98syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝑥 ∈ ℝ)
10094, 99ffvelcdmd 7019 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
10114rexrd 11165 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝑋) ∈ ℝ*)
10269a1i 11 . . . . . . . . . . . . 13 (𝜑 → +∞ ∈ ℝ*)
1038, 5ltsubrpd 12969 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝑋) < 𝐵)
1048ltpnfd 13023 . . . . . . . . . . . . 13 (𝜑𝐵 < +∞)
105101, 102, 8, 103, 104eliood 45479 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ((𝐵𝑋)(,)+∞))
10636, 1, 37, 38, 60, 54, 65, 84, 88, 14, 105fourierdlem105 46192 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ((𝐵𝑋)[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
107100, 106itgcl 25683 . . . . . . . . . 10 (𝜑 → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
10893, 107eqeltrrd 2829 . . . . . . . . 9 (𝜑 → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
109108subidd 11463 . . . . . . . 8 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = 0)
110109eqcomd 2735 . . . . . . 7 (𝜑 → 0 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
111110adantr 480 . . . . . 6 ((𝜑𝑇 < 𝑋) → 0 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
11224adantr 480 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝐴𝑋) ∈ ℝ)
1133adantr 480 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → 𝐴 ∈ ℝ)
11414adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ∈ ℝ)
11536, 37, 38fourierdlem11 46099 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
116115simp3d 1144 . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
1173, 8, 116ltled 11264 . . . . . . . . . . 11 (𝜑𝐴𝐵)
118117adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → 𝐴𝐵)
1193, 8, 6lesub1d 11727 . . . . . . . . . . 11 (𝜑 → (𝐴𝐵 ↔ (𝐴𝑋) ≤ (𝐵𝑋)))
120119adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (𝐴𝐵 ↔ (𝐴𝑋) ≤ (𝐵𝑋)))
121118, 120mpbid 232 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝐴𝑋) ≤ (𝐵𝑋))
1228adantr 480 . . . . . . . . . . 11 ((𝜑𝑇 < 𝑋) → 𝐵 ∈ ℝ)
1236adantr 480 . . . . . . . . . . 11 ((𝜑𝑇 < 𝑋) → 𝑋 ∈ ℝ)
124 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑇 < 𝑋) → 𝑇 < 𝑋)
1251, 124eqbrtrrid 5128 . . . . . . . . . . 11 ((𝜑𝑇 < 𝑋) → (𝐵𝐴) < 𝑋)
126122, 113, 123, 125ltsub23d 11725 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) < 𝐴)
127114, 113, 126ltled 11264 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ≤ 𝐴)
128112, 113, 114, 121, 127eliccd 45485 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ∈ ((𝐴𝑋)[,]𝐴))
12960adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝐹:ℝ⟶ℂ)
130129, 53ffvelcdmd 7019 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
131130adantlr 715 . . . . . . . 8 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
13224rexrd 11165 . . . . . . . . . . 11 (𝜑 → (𝐴𝑋) ∈ ℝ*)
1333, 8, 6, 116ltsub1dd 11732 . . . . . . . . . . 11 (𝜑 → (𝐴𝑋) < (𝐵𝑋))
13414ltpnfd 13023 . . . . . . . . . . 11 (𝜑 → (𝐵𝑋) < +∞)
135132, 102, 14, 133, 134eliood 45479 . . . . . . . . . 10 (𝜑 → (𝐵𝑋) ∈ ((𝐴𝑋)(,)+∞))
13636, 1, 37, 38, 60, 54, 65, 84, 88, 24, 135fourierdlem105 46192 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
137136adantr 480 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
13837adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝑀 ∈ ℕ)
13938adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝑄 ∈ (𝑃𝑀))
14060adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝐹:ℝ⟶ℂ)
14154adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
14265adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
14384adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
14488adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
145101adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ∈ ℝ*)
14669a1i 11 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → +∞ ∈ ℝ*)
147113ltpnfd 13023 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → 𝐴 < +∞)
148145, 146, 113, 126, 147eliood 45479 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝐴 ∈ ((𝐵𝑋)(,)+∞))
14936, 1, 138, 139, 140, 141, 142, 143, 144, 114, 148fourierdlem105 46192 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝑥 ∈ ((𝐵𝑋)[,]𝐴) ↦ (𝐹𝑥)) ∈ 𝐿1)
150112, 113, 128, 131, 137, 149itgspliticc 25736 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
151150oveq1d 7364 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
15260adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐹:ℝ⟶ℂ)
15324adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ∈ ℝ)
15414adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
155 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
156 eliccre 45486 . . . . . . . . . . 11 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ ∧ 𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
157153, 154, 155, 156syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
158152, 157ffvelcdmd 7019 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹𝑥) ∈ ℂ)
159158, 136itgcl 25683 . . . . . . . 8 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 ∈ ℂ)
160159adantr 480 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 ∈ ℂ)
16160adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝐹:ℝ⟶ℂ)
16214adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → (𝐵𝑋) ∈ ℝ)
1633adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝐴 ∈ ℝ)
164 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝑥 ∈ ((𝐵𝑋)[,]𝐴))
165 eliccre 45486 . . . . . . . . . . 11 (((𝐵𝑋) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
166162, 163, 164, 165syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
167161, 166ffvelcdmd 7019 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
168167adantlr 715 . . . . . . . 8 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
169168, 149itgcl 25683 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
170108adantr 480 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
171160, 169, 170addsubassd 11495 . . . . . 6 ((𝜑𝑇 < 𝑋) → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
172111, 151, 1713eqtrd 2768 . . . . 5 ((𝜑𝑇 < 𝑋) → 0 = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
173172oveq2d 7365 . . . 4 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − 0) = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))))
174160subid1d 11464 . . . 4 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − 0) = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥)
175159subidd 11463 . . . . . . 7 (𝜑 → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) = 0)
176175oveq1d 7364 . . . . . 6 (𝜑 → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
177176adantr 480 . . . . 5 ((𝜑𝑇 < 𝑋) → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
178169, 170subcld 11475 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) ∈ ℂ)
179160, 160, 178subsub4d 11506 . . . . 5 ((𝜑𝑇 < 𝑋) → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))))
180 df-neg 11350 . . . . . 6 -(∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
181169, 170negsubdi2d 11491 . . . . . 6 ((𝜑𝑇 < 𝑋) → -(∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
182180, 181eqtr3id 2778 . . . . 5 ((𝜑𝑇 < 𝑋) → (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
183177, 179, 1823eqtr3d 2772 . . . 4 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
184173, 174, 1833eqtr3d 2772 . . 3 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
185107subidd 11463 . . . . . . . 8 (𝜑 → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = 0)
186185eqcomd 2735 . . . . . . 7 (𝜑 → 0 = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
187186oveq2d 7365 . . . . . 6 (𝜑 → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + 0) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
188187adantr 480 . . . . 5 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + 0) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
189169addridd 11316 . . . . 5 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + 0) = ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
190114, 122, 113, 127, 118eliccd 45485 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝐴 ∈ ((𝐵𝑋)[,]𝐵))
191100adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
1923, 8iccssred 13337 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
19360, 192feqresmpt 6892 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
19460, 192fssresd 6691 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℂ)
195 ioossicc 13336 . . . . . . . . . . . . . . 15 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
1963rexrd 11165 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ*)
197196adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ*)
1988rexrd 11165 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ*)
199198adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐵 ∈ ℝ*)
20036, 37, 38fourierdlem15 46103 . . . . . . . . . . . . . . . . 17 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
201200adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
202 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
203197, 199, 201, 202fourierdlem8 46096 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
204195, 203sstrid 3947 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
205204resabs1d 5959 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
206205, 65eqeltrd 2828 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
207205eqcomd 2735 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
208207oveq1d 7364 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
20984, 208eleqtrd 2830 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
210207oveq1d 7364 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
21188, 210eleqtrd 2830 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
21236, 37, 38, 194, 206, 209, 211fourierdlem69 46156 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ 𝐿1)
213193, 212eqeltrrd 2829 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
214213adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
215114, 122, 190, 191, 149, 214itgspliticc 25736 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
216215oveq2d 7365 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
217216oveq2d 7365 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))))
218107adantr 480 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
219215, 218eqeltrrd 2829 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) ∈ ℂ)
220169, 218, 219addsub12d 11498 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))))
22160adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
2223adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
2238adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
224 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
225 eliccre 45486 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
226222, 223, 224, 225syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
227221, 226ffvelcdmd 7019 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
228227, 213itgcl 25683 . . . . . . . . . . 11 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
229228adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
230169, 169, 229subsub4d 11506 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
231230eqcomd 2735 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
232231oveq2d 7365 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
233169subidd 11463 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = 0)
234233oveq1d 7364 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (0 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
235 df-neg 11350 . . . . . . . . 9 -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = (0 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
236234, 235eqtr4di 2782 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
237236oveq2d 7365 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
238218, 229negsubd 11481 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
239232, 237, 2383eqtrd 2768 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
240217, 220, 2393eqtrd 2768 . . . . 5 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
241188, 189, 2403eqtr3d 2772 . . . 4 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
242241oveq2d 7365 . . 3 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
243108, 107, 228subsubd 11503 . . . . 5 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ((∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
24493oveq2d 7365 . . . . . . 7 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
245244, 109eqtrd 2764 . . . . . 6 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = 0)
246245oveq1d 7364 . . . . 5 (𝜑 → ((∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (0 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
247228addlidd 11317 . . . . 5 (𝜑 → (0 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
248243, 246, 2473eqtrd 2768 . . . 4 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
249248adantr 480 . . 3 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
250184, 242, 2493eqtrd 2768 . 2 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
25124adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝐴𝑋) ∈ ℝ)
25214adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝐵𝑋) ∈ ℝ)
2533adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → 𝐴 ∈ ℝ)
25424, 3, 39ltled 11264 . . . . . . 7 (𝜑 → (𝐴𝑋) ≤ 𝐴)
255254adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → (𝐴𝑋) ≤ 𝐴)
2566adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → 𝑋 ∈ ℝ)
2578adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → 𝐵 ∈ ℝ)
258 id 22 . . . . . . . . 9 (𝑋𝑇𝑋𝑇)
259258, 1breqtrdi 5133 . . . . . . . 8 (𝑋𝑇𝑋 ≤ (𝐵𝐴))
260259adantl 481 . . . . . . 7 ((𝜑𝑋𝑇) → 𝑋 ≤ (𝐵𝐴))
261256, 257, 253, 260lesubd 11724 . . . . . 6 ((𝜑𝑋𝑇) → 𝐴 ≤ (𝐵𝑋))
262251, 252, 253, 255, 261eliccd 45485 . . . . 5 ((𝜑𝑋𝑇) → 𝐴 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
263158adantlr 715 . . . . 5 (((𝜑𝑋𝑇) ∧ 𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹𝑥) ∈ ℂ)
264132, 102, 3, 39, 73eliood 45479 . . . . . . 7 (𝜑𝐴 ∈ ((𝐴𝑋)(,)+∞))
26536, 1, 37, 38, 60, 54, 65, 84, 88, 24, 264fourierdlem105 46192 . . . . . 6 (𝜑 → (𝑥 ∈ ((𝐴𝑋)[,]𝐴) ↦ (𝐹𝑥)) ∈ 𝐿1)
266265adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝑥 ∈ ((𝐴𝑋)[,]𝐴) ↦ (𝐹𝑥)) ∈ 𝐿1)
2673leidd 11686 . . . . . . . 8 (𝜑𝐴𝐴)
2685rpge0d 12941 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑋)
2698, 6subge02d 11712 . . . . . . . . 9 (𝜑 → (0 ≤ 𝑋 ↔ (𝐵𝑋) ≤ 𝐵))
270268, 269mpbid 232 . . . . . . . 8 (𝜑 → (𝐵𝑋) ≤ 𝐵)
271 iccss 13317 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐴 ∧ (𝐵𝑋) ≤ 𝐵)) → (𝐴[,](𝐵𝑋)) ⊆ (𝐴[,]𝐵))
2723, 8, 267, 270, 271syl22anc 838 . . . . . . 7 (𝜑 → (𝐴[,](𝐵𝑋)) ⊆ (𝐴[,]𝐵))
273 iccmbl 25465 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ) → (𝐴[,](𝐵𝑋)) ∈ dom vol)
2743, 14, 273syl2anc 584 . . . . . . 7 (𝜑 → (𝐴[,](𝐵𝑋)) ∈ dom vol)
275272, 274, 227, 213iblss 25704 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
276275adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝑥 ∈ (𝐴[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
277251, 252, 262, 263, 266, 276itgspliticc 25736 . . . 4 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥))
278268adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑇) → 0 ≤ 𝑋)
279269adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑇) → (0 ≤ 𝑋 ↔ (𝐵𝑋) ≤ 𝐵))
280278, 279mpbid 232 . . . . . . . . 9 ((𝜑𝑋𝑇) → (𝐵𝑋) ≤ 𝐵)
281253, 257, 252, 261, 280eliccd 45485 . . . . . . . 8 ((𝜑𝑋𝑇) → (𝐵𝑋) ∈ (𝐴[,]𝐵))
282227adantlr 715 . . . . . . . 8 (((𝜑𝑋𝑇) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2838leidd 11686 . . . . . . . . . . 11 (𝜑𝐵𝐵)
284283adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑇) → 𝐵𝐵)
285 iccss 13317 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ (𝐵𝑋) ∧ 𝐵𝐵)) → ((𝐵𝑋)[,]𝐵) ⊆ (𝐴[,]𝐵))
286253, 257, 261, 284, 285syl22anc 838 . . . . . . . . 9 ((𝜑𝑋𝑇) → ((𝐵𝑋)[,]𝐵) ⊆ (𝐴[,]𝐵))
287 iccmbl 25465 . . . . . . . . . . 11 (((𝐵𝑋) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝑋)[,]𝐵) ∈ dom vol)
28814, 8, 287syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋)[,]𝐵) ∈ dom vol)
289288adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑇) → ((𝐵𝑋)[,]𝐵) ∈ dom vol)
290213adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑇) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
291286, 289, 282, 290iblss 25704 . . . . . . . 8 ((𝜑𝑋𝑇) → (𝑥 ∈ ((𝐵𝑋)[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
292253, 257, 281, 282, 276, 291itgspliticc 25736 . . . . . . 7 ((𝜑𝑋𝑇) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
293292oveq1d 7364 . . . . . 6 ((𝜑𝑋𝑇) → (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = ((∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
29460adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝐹:ℝ⟶ℂ)
2953adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝐴 ∈ ℝ)
29614adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
297 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝑥 ∈ (𝐴[,](𝐵𝑋)))
298 eliccre 45486 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ ∧ 𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
299295, 296, 297, 298syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
300294, 299ffvelcdmd 7019 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → (𝐹𝑥) ∈ ℂ)
301300, 275itgcl 25683 . . . . . . . 8 (𝜑 → ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 ∈ ℂ)
302301, 107, 107addsubassd 11495 . . . . . . 7 (𝜑 → ((∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
303302adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → ((∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
304185oveq2d 7365 . . . . . . . 8 (𝜑 → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + 0))
305301addridd 11316 . . . . . . . 8 (𝜑 → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + 0) = ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥)
306304, 305eqtrd 2764 . . . . . . 7 (𝜑 → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥)
307306adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥)
308293, 303, 3073eqtrrd 2769 . . . . 5 ((𝜑𝑋𝑇) → ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 = (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
309308oveq2d 7365 . . . 4 ((𝜑𝑋𝑇) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
31093adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
311107adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
312310, 311eqeltrrd 2829 . . . . . 6 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
313282, 290itgcl 25683 . . . . . 6 ((𝜑𝑋𝑇) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
314312, 313, 311addsub12d 11498 . . . . 5 ((𝜑𝑋𝑇) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
315313, 312, 311addsubassd 11495 . . . . 5 ((𝜑𝑋𝑇) → ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
316314, 315eqtr4d 2767 . . . 4 ((𝜑𝑋𝑇) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
317277, 309, 3163eqtrd 2768 . . 3 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
318310oveq2d 7365 . . 3 ((𝜑𝑋𝑇) → ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
319313, 312pncand 11476 . . 3 ((𝜑𝑋𝑇) → ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
320317, 318, 3193eqtrd 2768 . 2 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
321250, 320, 47, 6ltlecasei 11224 1 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  cun 3901  wss 3903  ifcif 4476  {cpr 4579   class class class wbr 5092  cmpt 5173  dom cdm 5619  ran crn 5620  cres 5621  cio 6436  wf 6478  cfv 6482   Isom wiso 6483  (class class class)co 7349  m cmap 8753  supcsup 9330  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  cz 12471  +crp 12893  (,)cioo 13248  (,]cioc 13249  [,]cicc 13251  ...cfz 13410  ..^cfzo 13557  cfl 13694  chash 14237  cnccncf 24767  volcvol 25362  𝐿1cibl 25516  citg 25517   lim climc 25761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-symdif 4204  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-itg2 25520  df-ibl 25521  df-itg 25522  df-0p 25569  df-ditg 25746  df-limc 25765  df-dv 25766
This theorem is referenced by:  fourierdlem108  46195
  Copyright terms: Public domain W3C validator