Step | Hyp | Ref
| Expression |
1 | | fourierdlem107.t |
. . . . . . . . . . . . . . . . 17
⊢ 𝑇 = (𝐵 − 𝐴) |
2 | 1 | oveq2i 7286 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 − 𝑋) + 𝑇) = ((𝐴 − 𝑋) + (𝐵 − 𝐴)) |
3 | | fourierdlem107.a |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈ ℝ) |
4 | 3 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ ℂ) |
5 | | fourierdlem107.x |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
6 | 5 | rpred 12772 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑋 ∈ ℝ) |
7 | 6 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ ℂ) |
8 | | fourierdlem107.b |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈ ℝ) |
9 | 8 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ ℂ) |
10 | 4, 7, 9, 4 | subadd4b 42821 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐴 − 𝑋) + (𝐵 − 𝐴)) = ((𝐴 − 𝐴) + (𝐵 − 𝑋))) |
11 | 2, 10 | eqtrid 2790 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐴 − 𝑋) + 𝑇) = ((𝐴 − 𝐴) + (𝐵 − 𝑋))) |
12 | 4 | subidd 11320 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴 − 𝐴) = 0) |
13 | 12 | oveq1d 7290 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐴 − 𝐴) + (𝐵 − 𝑋)) = (0 + (𝐵 − 𝑋))) |
14 | 8, 6 | resubcld 11403 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℝ) |
15 | 14 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℂ) |
16 | 15 | addid2d 11176 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0 + (𝐵 − 𝑋)) = (𝐵 − 𝑋)) |
17 | 11, 13, 16 | 3eqtrd 2782 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐴 − 𝑋) + 𝑇) = (𝐵 − 𝑋)) |
18 | 1 | oveq2i 7286 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 + 𝑇) = (𝐴 + (𝐵 − 𝐴)) |
19 | 4, 9 | pncan3d 11335 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
20 | 18, 19 | eqtrid 2790 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 + 𝑇) = 𝐵) |
21 | 17, 20 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝐴 − 𝑋) + 𝑇)[,](𝐴 + 𝑇)) = ((𝐵 − 𝑋)[,]𝐵)) |
22 | 21 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐵 − 𝑋)[,]𝐵) = (((𝐴 − 𝑋) + 𝑇)[,](𝐴 + 𝑇))) |
23 | 22 | itgeq1d 43498 |
. . . . . . . . . . 11
⊢ (𝜑 → ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 = ∫(((𝐴 − 𝑋) + 𝑇)[,](𝐴 + 𝑇))(𝐹‘𝑥) d𝑥) |
24 | 3, 6 | resubcld 11403 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 − 𝑋) ∈ ℝ) |
25 | | fourierdlem107.o |
. . . . . . . . . . . . 13
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
26 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑗 → (𝑝‘𝑖) = (𝑝‘𝑗)) |
27 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1)) |
28 | 27 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1))) |
29 | 26, 28 | breq12d 5087 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑗 → ((𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))) |
30 | 29 | cbvralvw 3383 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑖 ∈
(0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1))) |
31 | 30 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ →
(∀𝑖 ∈
(0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))) |
32 | 31 | anbi2d 629 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ → ((((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1))))) |
33 | 32 | rabbidv 3414 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ → {𝑝 ∈ (ℝ
↑m (0...𝑚))
∣ (((𝑝‘0) =
(𝐴 − 𝑋) ∧ (𝑝‘𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))}) |
34 | 33 | mpteq2ia 5177 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ
↑m (0...𝑚))
∣ (((𝑝‘0) =
(𝐴 − 𝑋) ∧ (𝑝‘𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))}) |
35 | 25, 34 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))}) |
36 | | fourierdlem107.p |
. . . . . . . . . . . . . . 15
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
37 | | fourierdlem107.m |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ ℕ) |
38 | | fourierdlem107.q |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
39 | 3, 5 | ltsubrpd 12804 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 − 𝑋) < 𝐴) |
40 | | fourierdlem107.h |
. . . . . . . . . . . . . . 15
⊢ 𝐻 = ({(𝐴 − 𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
41 | | fourierdlem107.n |
. . . . . . . . . . . . . . 15
⊢ 𝑁 = ((♯‘𝐻) − 1) |
42 | | fourierdlem107.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) |
43 | 1, 36, 37, 38, 24, 3, 39, 25, 40, 41, 42 | fourierdlem54 43701 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻))) |
44 | 43 | simpld 495 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁))) |
45 | 44 | simpld 495 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℕ) |
46 | 8, 3 | resubcld 11403 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
47 | 1, 46 | eqeltrid 2843 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ ℝ) |
48 | 44 | simprd 496 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ (𝑂‘𝑁)) |
49 | 24 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,]𝐴)) → (𝐴 − 𝑋) ∈ ℝ) |
50 | 3 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,]𝐴)) → 𝐴 ∈ ℝ) |
51 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,]𝐴)) → 𝑥 ∈ ((𝐴 − 𝑋)[,]𝐴)) |
52 | | eliccre 43043 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 − 𝑋) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,]𝐴)) → 𝑥 ∈ ℝ) |
53 | 49, 50, 51, 52 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,]𝐴)) → 𝑥 ∈ ℝ) |
54 | | fourierdlem107.fper |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
55 | 53, 54 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,]𝐴)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
56 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (𝑆‘𝑖) = (𝑆‘𝑗)) |
57 | 56 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → ((𝑆‘𝑖) + 𝑇) = ((𝑆‘𝑗) + 𝑇)) |
58 | 57 | cbvmptv 5187 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑁) ↦ ((𝑆‘𝑖) + 𝑇)) = (𝑗 ∈ (0...𝑁) ↦ ((𝑆‘𝑗) + 𝑇)) |
59 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ
↑m (0...𝑚))
∣ (((𝑝‘0) =
((𝐴 − 𝑋) + 𝑇) ∧ (𝑝‘𝑚) = (𝐴 + 𝑇)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = ((𝐴 − 𝑋) + 𝑇) ∧ (𝑝‘𝑚) = (𝐴 + 𝑇)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝‘𝑗) < (𝑝‘(𝑗 + 1)))}) |
60 | | fourierdlem107.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
61 | 37 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ) |
62 | 38 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃‘𝑀)) |
63 | 60 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ) |
64 | 54 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
65 | | fourierdlem107.fcn |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
66 | 65 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
67 | 24 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 − 𝑋) ∈ ℝ) |
68 | 67 | rexrd 11025 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 − 𝑋) ∈
ℝ*) |
69 | | pnfxr 11029 |
. . . . . . . . . . . . . . 15
⊢ +∞
∈ ℝ* |
70 | 69 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → +∞ ∈
ℝ*) |
71 | 3 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ℝ) |
72 | 39 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 − 𝑋) < 𝐴) |
73 | 3 | ltpnfd 12857 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 < +∞) |
74 | 73 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐴 < +∞) |
75 | 68, 70, 71, 72, 74 | eliood 43036 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ((𝐴 − 𝑋)(,)+∞)) |
76 | | fourierdlem107.e |
. . . . . . . . . . . . 13
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
77 | | fourierdlem107.z |
. . . . . . . . . . . . 13
⊢ 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) |
78 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁)) |
79 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) |
80 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) |
81 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (((𝑍‘(𝐸‘(𝑆‘𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝑍‘(𝐸‘(𝑆‘𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) |
82 | | fourierdlem107.i |
. . . . . . . . . . . . 13
⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝑍‘(𝐸‘𝑥))}, ℝ, < )) |
83 | 36, 1, 61, 62, 63, 64, 66, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 80, 81, 82 | fourierdlem90 43737 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
84 | | fourierdlem107.r |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
85 | 84 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
86 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅) |
87 | 36, 1, 61, 62, 63, 64, 66, 85, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 82, 86 | fourierdlem89 43736 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if((𝑍‘(𝐸‘(𝑆‘𝑗))) = (𝑄‘(𝐼‘(𝑆‘𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝑍‘(𝐸‘(𝑆‘𝑗))))) ∈ ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) |
88 | | fourierdlem107.l |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
89 | 88 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
90 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿) |
91 | 36, 1, 61, 62, 63, 64, 66, 89, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 82, 90 | fourierdlem91 43738 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆‘𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) |
92 | 24, 3, 35, 45, 47, 48, 55, 58, 59, 60, 83, 87, 91 | fourierdlem92 43739 |
. . . . . . . . . . 11
⊢ (𝜑 → ∫(((𝐴 − 𝑋) + 𝑇)[,](𝐴 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) |
93 | 23, 92 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝜑 → ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 = ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) |
94 | 60 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐵)) → 𝐹:ℝ⟶ℂ) |
95 | 14 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐵)) → (𝐵 − 𝑋) ∈ ℝ) |
96 | 8 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐵)) → 𝐵 ∈ ℝ) |
97 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐵)) → 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐵)) |
98 | | eliccre 43043 |
. . . . . . . . . . . . 13
⊢ (((𝐵 − 𝑋) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐵)) → 𝑥 ∈ ℝ) |
99 | 95, 96, 97, 98 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐵)) → 𝑥 ∈ ℝ) |
100 | 94, 99 | ffvelrnd 6962 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
101 | 14 | rexrd 11025 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 − 𝑋) ∈
ℝ*) |
102 | 69 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → +∞ ∈
ℝ*) |
103 | 8, 5 | ltsubrpd 12804 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 − 𝑋) < 𝐵) |
104 | 8 | ltpnfd 12857 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 < +∞) |
105 | 101, 102,
8, 103, 104 | eliood 43036 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ((𝐵 − 𝑋)(,)+∞)) |
106 | 36, 1, 37, 38, 60, 54, 65, 84, 88, 14, 105 | fourierdlem105 43752 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ((𝐵 − 𝑋)[,]𝐵) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
107 | 100, 106 | itgcl 24948 |
. . . . . . . . . 10
⊢ (𝜑 → ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 ∈ ℂ) |
108 | 93, 107 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (𝜑 → ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 ∈ ℂ) |
109 | 108 | subidd 11320 |
. . . . . . . 8
⊢ (𝜑 → (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) = 0) |
110 | 109 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → 0 = (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) |
111 | 110 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → 0 = (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) |
112 | 24 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (𝐴 − 𝑋) ∈ ℝ) |
113 | 3 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → 𝐴 ∈ ℝ) |
114 | 14 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (𝐵 − 𝑋) ∈ ℝ) |
115 | 36, 37, 38 | fourierdlem11 43659 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) |
116 | 115 | simp3d 1143 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 < 𝐵) |
117 | 3, 8, 116 | ltled 11123 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
118 | 117 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → 𝐴 ≤ 𝐵) |
119 | 3, 8, 6 | lesub1d 11582 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝑋) ≤ (𝐵 − 𝑋))) |
120 | 119 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝑋) ≤ (𝐵 − 𝑋))) |
121 | 118, 120 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (𝐴 − 𝑋) ≤ (𝐵 − 𝑋)) |
122 | 8 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → 𝐵 ∈ ℝ) |
123 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → 𝑋 ∈ ℝ) |
124 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → 𝑇 < 𝑋) |
125 | 1, 124 | eqbrtrrid 5110 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (𝐵 − 𝐴) < 𝑋) |
126 | 122, 113,
123, 125 | ltsub23d 11580 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (𝐵 − 𝑋) < 𝐴) |
127 | 114, 113,
126 | ltled 11123 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (𝐵 − 𝑋) ≤ 𝐴) |
128 | 112, 113,
114, 121, 127 | eliccd 43042 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (𝐵 − 𝑋) ∈ ((𝐴 − 𝑋)[,]𝐴)) |
129 | 60 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,]𝐴)) → 𝐹:ℝ⟶ℂ) |
130 | 129, 53 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,]𝐴)) → (𝐹‘𝑥) ∈ ℂ) |
131 | 130 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,]𝐴)) → (𝐹‘𝑥) ∈ ℂ) |
132 | 24 | rexrd 11025 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 − 𝑋) ∈
ℝ*) |
133 | 3, 8, 6, 116 | ltsub1dd 11587 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 − 𝑋) < (𝐵 − 𝑋)) |
134 | 14 | ltpnfd 12857 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 − 𝑋) < +∞) |
135 | 132, 102,
14, 133, 134 | eliood 43036 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ((𝐴 − 𝑋)(,)+∞)) |
136 | 36, 1, 37, 38, 60, 54, 65, 84, 88, 24, 135 | fourierdlem105 43752 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
137 | 136 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
138 | 37 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → 𝑀 ∈ ℕ) |
139 | 38 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → 𝑄 ∈ (𝑃‘𝑀)) |
140 | 60 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → 𝐹:ℝ⟶ℂ) |
141 | 54 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑇 < 𝑋) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
142 | 65 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
143 | 84 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
144 | 88 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
145 | 101 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (𝐵 − 𝑋) ∈
ℝ*) |
146 | 69 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → +∞ ∈
ℝ*) |
147 | 113 | ltpnfd 12857 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → 𝐴 < +∞) |
148 | 145, 146,
113, 126, 147 | eliood 43036 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → 𝐴 ∈ ((𝐵 − 𝑋)(,)+∞)) |
149 | 36, 1, 138, 139, 140, 141, 142, 143, 144, 114, 148 | fourierdlem105 43752 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (𝑥 ∈ ((𝐵 − 𝑋)[,]𝐴) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
150 | 112, 113,
128, 131, 137, 149 | itgspliticc 25001 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 = (∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) |
151 | 150 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) = ((∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) |
152 | 60 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝐹:ℝ⟶ℂ) |
153 | 24 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝐴 − 𝑋) ∈ ℝ) |
154 | 14 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝐵 − 𝑋) ∈ ℝ) |
155 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) |
156 | | eliccre 43043 |
. . . . . . . . . . 11
⊢ (((𝐴 − 𝑋) ∈ ℝ ∧ (𝐵 − 𝑋) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑥 ∈ ℝ) |
157 | 153, 154,
155, 156 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑥 ∈ ℝ) |
158 | 152, 157 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝐹‘𝑥) ∈ ℂ) |
159 | 158, 136 | itgcl 24948 |
. . . . . . . 8
⊢ (𝜑 → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 ∈ ℂ) |
160 | 159 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 ∈ ℂ) |
161 | 60 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐴)) → 𝐹:ℝ⟶ℂ) |
162 | 14 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐴)) → (𝐵 − 𝑋) ∈ ℝ) |
163 | 3 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐴)) → 𝐴 ∈ ℝ) |
164 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐴)) → 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐴)) |
165 | | eliccre 43043 |
. . . . . . . . . . 11
⊢ (((𝐵 − 𝑋) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐴)) → 𝑥 ∈ ℝ) |
166 | 162, 163,
164, 165 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐴)) → 𝑥 ∈ ℝ) |
167 | 161, 166 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐴)) → (𝐹‘𝑥) ∈ ℂ) |
168 | 167 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐴)) → (𝐹‘𝑥) ∈ ℂ) |
169 | 168, 149 | itgcl 24948 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 ∈ ℂ) |
170 | 108 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 ∈ ℂ) |
171 | 160, 169,
170 | addsubassd 11352 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ((∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) = (∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥))) |
172 | 111, 151,
171 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → 0 = (∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥))) |
173 | 172 | oveq2d 7291 |
. . . 4
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 − 0) = (∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 − (∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)))) |
174 | 160 | subid1d 11321 |
. . . 4
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 − 0) = ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥) |
175 | 159 | subidd 11320 |
. . . . . . 7
⊢ (𝜑 → (∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥) = 0) |
176 | 175 | oveq1d 7290 |
. . . . . 6
⊢ (𝜑 → ((∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥) − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) = (0 − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥))) |
177 | 176 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ((∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥) − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) = (0 − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥))) |
178 | 169, 170 | subcld 11332 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) ∈ ℂ) |
179 | 160, 160,
178 | subsub4d 11363 |
. . . . 5
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ((∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥) − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) = (∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 − (∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)))) |
180 | | df-neg 11208 |
. . . . . 6
⊢
-(∫((𝐵 −
𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) = (0 − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) |
181 | 169, 170 | negsubdi2d 11348 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → -(∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) = (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) |
182 | 180, 181 | eqtr3id 2792 |
. . . . 5
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (0 − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) = (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) |
183 | 177, 179,
182 | 3eqtr3d 2786 |
. . . 4
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 − (∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥))) = (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) |
184 | 173, 174,
183 | 3eqtr3d 2786 |
. . 3
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) |
185 | 107 | subidd 11320 |
. . . . . . . 8
⊢ (𝜑 → (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) = 0) |
186 | 185 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → 0 = (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥)) |
187 | 186 | oveq2d 7291 |
. . . . . 6
⊢ (𝜑 → (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + 0) = (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥))) |
188 | 187 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + 0) = (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥))) |
189 | 169 | addid1d 11175 |
. . . . 5
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + 0) = ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) |
190 | 114, 122,
113, 127, 118 | eliccd 43042 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → 𝐴 ∈ ((𝐵 − 𝑋)[,]𝐵)) |
191 | 100 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐵 − 𝑋)[,]𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
192 | 3, 8 | iccssred 13166 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
193 | 60, 192 | feqresmpt 6838 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥))) |
194 | 60, 192 | fssresd 6641 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℂ) |
195 | | ioossicc 13165 |
. . . . . . . . . . . . . . 15
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
196 | 3 | rexrd 11025 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
197 | 196 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈
ℝ*) |
198 | 8 | rexrd 11025 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
199 | 198 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐵 ∈
ℝ*) |
200 | 36, 37, 38 | fourierdlem15 43663 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
201 | 200 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
202 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
203 | 197, 199,
201, 202 | fourierdlem8 43656 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵)) |
204 | 195, 203 | sstrid 3932 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵)) |
205 | 204 | resabs1d 5922 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
206 | 205, 65 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
207 | 205 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
208 | 207 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
209 | 84, 208 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
210 | 207 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
211 | 88, 210 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
212 | 36, 37, 38, 194, 206, 209, 211 | fourierdlem69 43716 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈
𝐿1) |
213 | 193, 212 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
214 | 213 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
215 | 114, 122,
190, 191, 149, 214 | itgspliticc 25001 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 = (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) |
216 | 215 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) = (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥))) |
217 | 216 | oveq2d 7291 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥)) = (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)))) |
218 | 107 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 ∈ ℂ) |
219 | 215, 218 | eqeltrrd 2840 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) ∈ ℂ) |
220 | 169, 218,
219 | addsub12d 11355 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥))) = (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)))) |
221 | 60 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ) |
222 | 3 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
223 | 8 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
224 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
225 | | eliccre 43043 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
226 | 222, 223,
224, 225 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
227 | 221, 226 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
228 | 227, 213 | itgcl 24948 |
. . . . . . . . . . 11
⊢ (𝜑 → ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 ∈ ℂ) |
229 | 228 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 ∈ ℂ) |
230 | 169, 169,
229 | subsub4d 11363 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ((∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) = (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥))) |
231 | 230 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) = ((∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) |
232 | 231 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥))) = (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 + ((∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥))) |
233 | 169 | subidd 11320 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) = 0) |
234 | 233 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ((∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) = (0 − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) |
235 | | df-neg 11208 |
. . . . . . . . 9
⊢
-∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 = (0 − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
236 | 234, 235 | eqtr4di 2796 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ((∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) = -∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
237 | 236 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 + ((∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) = (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 + -∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) |
238 | 218, 229 | negsubd 11338 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 + -∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) = (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) |
239 | 232, 237,
238 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥))) = (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) |
240 | 217, 220,
239 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥)) = (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) |
241 | 188, 189,
240 | 3eqtr3d 2786 |
. . . 4
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 = (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) |
242 | 241 | oveq2d 7291 |
. . 3
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) = (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥))) |
243 | 108, 107,
228 | subsubd 11360 |
. . . . 5
⊢ (𝜑 → (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) = ((∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) |
244 | 93 | oveq2d 7291 |
. . . . . . 7
⊢ (𝜑 → (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) = (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) |
245 | 244, 109 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) = 0) |
246 | 245 | oveq1d 7290 |
. . . . 5
⊢ (𝜑 → ((∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) = (0 + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) |
247 | 228 | addid2d 11176 |
. . . . 5
⊢ (𝜑 → (0 + ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
248 | 243, 246,
247 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
249 | 248 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
250 | 184, 242,
249 | 3eqtrd 2782 |
. 2
⊢ ((𝜑 ∧ 𝑇 < 𝑋) → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
251 | 24 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (𝐴 − 𝑋) ∈ ℝ) |
252 | 14 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (𝐵 − 𝑋) ∈ ℝ) |
253 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → 𝐴 ∈ ℝ) |
254 | 24, 3, 39 | ltled 11123 |
. . . . . . 7
⊢ (𝜑 → (𝐴 − 𝑋) ≤ 𝐴) |
255 | 254 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (𝐴 − 𝑋) ≤ 𝐴) |
256 | 6 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → 𝑋 ∈ ℝ) |
257 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → 𝐵 ∈ ℝ) |
258 | | id 22 |
. . . . . . . . 9
⊢ (𝑋 ≤ 𝑇 → 𝑋 ≤ 𝑇) |
259 | 258, 1 | breqtrdi 5115 |
. . . . . . . 8
⊢ (𝑋 ≤ 𝑇 → 𝑋 ≤ (𝐵 − 𝐴)) |
260 | 259 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → 𝑋 ≤ (𝐵 − 𝐴)) |
261 | 256, 257,
253, 260 | lesubd 11579 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → 𝐴 ≤ (𝐵 − 𝑋)) |
262 | 251, 252,
253, 255, 261 | eliccd 43042 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → 𝐴 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) |
263 | 158 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ≤ 𝑇) ∧ 𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝐹‘𝑥) ∈ ℂ) |
264 | 132, 102,
3, 39, 73 | eliood 43036 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ((𝐴 − 𝑋)(,)+∞)) |
265 | 36, 1, 37, 38, 60, 54, 65, 84, 88, 24, 264 | fourierdlem105 43752 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ((𝐴 − 𝑋)[,]𝐴) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
266 | 265 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (𝑥 ∈ ((𝐴 − 𝑋)[,]𝐴) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
267 | 3 | leidd 11541 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ≤ 𝐴) |
268 | 5 | rpge0d 12776 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ 𝑋) |
269 | 8, 6 | subge02d 11567 |
. . . . . . . . 9
⊢ (𝜑 → (0 ≤ 𝑋 ↔ (𝐵 − 𝑋) ≤ 𝐵)) |
270 | 268, 269 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 − 𝑋) ≤ 𝐵) |
271 | | iccss 13147 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 𝐴 ∧ (𝐵 − 𝑋) ≤ 𝐵)) → (𝐴[,](𝐵 − 𝑋)) ⊆ (𝐴[,]𝐵)) |
272 | 3, 8, 267, 270, 271 | syl22anc 836 |
. . . . . . 7
⊢ (𝜑 → (𝐴[,](𝐵 − 𝑋)) ⊆ (𝐴[,]𝐵)) |
273 | | iccmbl 24730 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 − 𝑋) ∈ ℝ) → (𝐴[,](𝐵 − 𝑋)) ∈ dom vol) |
274 | 3, 14, 273 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐴[,](𝐵 − 𝑋)) ∈ dom vol) |
275 | 272, 274,
227, 213 | iblss 24969 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐴[,](𝐵 − 𝑋)) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
276 | 275 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (𝑥 ∈ (𝐴[,](𝐵 − 𝑋)) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
277 | 251, 252,
262, 263, 266, 276 | itgspliticc 25001 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + ∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥)) |
278 | 268 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → 0 ≤ 𝑋) |
279 | 269 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (0 ≤ 𝑋 ↔ (𝐵 − 𝑋) ≤ 𝐵)) |
280 | 278, 279 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (𝐵 − 𝑋) ≤ 𝐵) |
281 | 253, 257,
252, 261, 280 | eliccd 43042 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (𝐵 − 𝑋) ∈ (𝐴[,]𝐵)) |
282 | 227 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ≤ 𝑇) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
283 | 8 | leidd 11541 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ≤ 𝐵) |
284 | 283 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → 𝐵 ≤ 𝐵) |
285 | | iccss 13147 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ (𝐵 − 𝑋) ∧ 𝐵 ≤ 𝐵)) → ((𝐵 − 𝑋)[,]𝐵) ⊆ (𝐴[,]𝐵)) |
286 | 253, 257,
261, 284, 285 | syl22anc 836 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ((𝐵 − 𝑋)[,]𝐵) ⊆ (𝐴[,]𝐵)) |
287 | | iccmbl 24730 |
. . . . . . . . . . 11
⊢ (((𝐵 − 𝑋) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 − 𝑋)[,]𝐵) ∈ dom vol) |
288 | 14, 8, 287 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐵 − 𝑋)[,]𝐵) ∈ dom vol) |
289 | 288 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ((𝐵 − 𝑋)[,]𝐵) ∈ dom vol) |
290 | 213 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
291 | 286, 289,
282, 290 | iblss 24969 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (𝑥 ∈ ((𝐵 − 𝑋)[,]𝐵) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
292 | 253, 257,
281, 282, 276, 291 | itgspliticc 25001 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 = (∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥)) |
293 | 292 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) = ((∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥)) |
294 | 60 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,](𝐵 − 𝑋))) → 𝐹:ℝ⟶ℂ) |
295 | 3 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,](𝐵 − 𝑋))) → 𝐴 ∈ ℝ) |
296 | 14 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,](𝐵 − 𝑋))) → (𝐵 − 𝑋) ∈ ℝ) |
297 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,](𝐵 − 𝑋))) → 𝑥 ∈ (𝐴[,](𝐵 − 𝑋))) |
298 | | eliccre 43043 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 − 𝑋) ∈ ℝ ∧ 𝑥 ∈ (𝐴[,](𝐵 − 𝑋))) → 𝑥 ∈ ℝ) |
299 | 295, 296,
297, 298 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,](𝐵 − 𝑋))) → 𝑥 ∈ ℝ) |
300 | 294, 299 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,](𝐵 − 𝑋))) → (𝐹‘𝑥) ∈ ℂ) |
301 | 300, 275 | itgcl 24948 |
. . . . . . . 8
⊢ (𝜑 → ∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 ∈ ℂ) |
302 | 301, 107,
107 | addsubassd 11352 |
. . . . . . 7
⊢ (𝜑 → ((∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) = (∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥))) |
303 | 302 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ((∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) = (∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥))) |
304 | 185 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝜑 → (∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥)) = (∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + 0)) |
305 | 301 | addid1d 11175 |
. . . . . . . 8
⊢ (𝜑 → (∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + 0) = ∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥) |
306 | 304, 305 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥)) = ∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥) |
307 | 306 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 + (∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥)) = ∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥) |
308 | 293, 303,
307 | 3eqtrrd 2783 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = (∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥)) |
309 | 308 | oveq2d 7291 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + ∫(𝐴[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥) = (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥))) |
310 | 93 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 = ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) |
311 | 107 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥 ∈ ℂ) |
312 | 310, 311 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 ∈ ℂ) |
313 | 282, 290 | itgcl 24948 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 ∈ ℂ) |
314 | 312, 313,
311 | addsub12d 11355 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥)) = (∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 + (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥))) |
315 | 313, 312,
311 | addsubassd 11352 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ((∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 + ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) = (∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 + (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥))) |
316 | 314, 315 | eqtr4d 2781 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → (∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥)) = ((∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 + ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥)) |
317 | 277, 309,
316 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ((∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 + ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥)) |
318 | 310 | oveq2d 7291 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ((∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 + ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫((𝐵 − 𝑋)[,]𝐵)(𝐹‘𝑥) d𝑥) = ((∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 + ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥)) |
319 | 313, 312 | pncand 11333 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ((∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 + ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) − ∫((𝐴 − 𝑋)[,]𝐴)(𝐹‘𝑥) d𝑥) = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
320 | 317, 318,
319 | 3eqtrd 2782 |
. 2
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑇) → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
321 | 250, 320,
47, 6 | ltlecasei 11083 |
1
⊢ (𝜑 → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |