Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem107 Structured version   Visualization version   GIF version

Theorem fourierdlem107 46242
Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 46227 where the integral was shifted by the exact period. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem107.a (𝜑𝐴 ∈ ℝ)
fourierdlem107.b (𝜑𝐵 ∈ ℝ)
fourierdlem107.t 𝑇 = (𝐵𝐴)
fourierdlem107.x (𝜑𝑋 ∈ ℝ+)
fourierdlem107.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem107.m (𝜑𝑀 ∈ ℕ)
fourierdlem107.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem107.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem107.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem107.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem107.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem107.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem107.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem107.h 𝐻 = ({(𝐴𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem107.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem107.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem107.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem107.z 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem107.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem107 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑓,𝑘,𝑦   𝐴,𝑖,𝑥,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖   𝐵,𝑓,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑓,𝐸,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑥,𝑦   𝑓,𝐻,𝑦   𝑥,𝐻   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑥,𝐿,𝑦   𝑖,𝑀,𝑥,𝑦   𝑚,𝑀,𝑝   𝑓,𝑁,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅,𝑦   𝑆,𝑓,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑝   𝑇,𝑓,𝑘,𝑦   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑓,𝑋,𝑦   𝑖,𝑋,𝑚,𝑝   𝑥,𝑋   𝑖,𝑍,𝑥,𝑦   𝜑,𝑓,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑅(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑆(𝑚)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑖,𝑘,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝐿(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑀(𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑋(𝑘)   𝑍(𝑓,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem107
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem107.t . . . . . . . . . . . . . . . . 17 𝑇 = (𝐵𝐴)
21oveq2i 7416 . . . . . . . . . . . . . . . 16 ((𝐴𝑋) + 𝑇) = ((𝐴𝑋) + (𝐵𝐴))
3 fourierdlem107.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ)
43recnd 11263 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℂ)
5 fourierdlem107.x . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ ℝ+)
65rpred 13051 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
76recnd 11263 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ℂ)
8 fourierdlem107.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ)
98recnd 11263 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℂ)
104, 7, 9, 4subadd4b 45311 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴𝑋) + (𝐵𝐴)) = ((𝐴𝐴) + (𝐵𝑋)))
112, 10eqtrid 2782 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝑋) + 𝑇) = ((𝐴𝐴) + (𝐵𝑋)))
124subidd 11582 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝐴) = 0)
1312oveq1d 7420 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐴) + (𝐵𝑋)) = (0 + (𝐵𝑋)))
148, 6resubcld 11665 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑋) ∈ ℝ)
1514recnd 11263 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝑋) ∈ ℂ)
1615addlidd 11436 . . . . . . . . . . . . . . 15 (𝜑 → (0 + (𝐵𝑋)) = (𝐵𝑋))
1711, 13, 163eqtrd 2774 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝑋) + 𝑇) = (𝐵𝑋))
181oveq2i 7416 . . . . . . . . . . . . . . 15 (𝐴 + 𝑇) = (𝐴 + (𝐵𝐴))
194, 9pncan3d 11597 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
2018, 19eqtrid 2782 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑇) = 𝐵)
2117, 20oveq12d 7423 . . . . . . . . . . . . 13 (𝜑 → (((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇)) = ((𝐵𝑋)[,]𝐵))
2221eqcomd 2741 . . . . . . . . . . . 12 (𝜑 → ((𝐵𝑋)[,]𝐵) = (((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇)))
2322itgeq1d 45986 . . . . . . . . . . 11 (𝜑 → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇))(𝐹𝑥) d𝑥)
243, 6resubcld 11665 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑋) ∈ ℝ)
25 fourierdlem107.o . . . . . . . . . . . . 13 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
26 fveq2 6876 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
27 oveq1 7412 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
2827fveq2d 6880 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
2926, 28breq12d 5132 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
3029cbvralvw 3220 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
3130a1i 11 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
3231anbi2d 630 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → ((((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
3332rabbidv 3423 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
3433mpteq2ia 5216 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
3525, 34eqtri 2758 . . . . . . . . . . . 12 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
36 fourierdlem107.p . . . . . . . . . . . . . . 15 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
37 fourierdlem107.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
38 fourierdlem107.q . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ (𝑃𝑀))
393, 5ltsubrpd 13083 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑋) < 𝐴)
40 fourierdlem107.h . . . . . . . . . . . . . . 15 𝐻 = ({(𝐴𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
41 fourierdlem107.n . . . . . . . . . . . . . . 15 𝑁 = ((♯‘𝐻) − 1)
42 fourierdlem107.s . . . . . . . . . . . . . . 15 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
431, 36, 37, 38, 24, 3, 39, 25, 40, 41, 42fourierdlem54 46189 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
4443simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
4544simpld 494 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
468, 3resubcld 11665 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℝ)
471, 46eqeltrid 2838 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
4844simprd 495 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (𝑂𝑁))
4924adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐴𝑋) ∈ ℝ)
503adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝐴 ∈ ℝ)
51 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝑥 ∈ ((𝐴𝑋)[,]𝐴))
52 eliccre 45534 . . . . . . . . . . . . . 14 (((𝐴𝑋) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
5349, 50, 51, 52syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
54 fourierdlem107.fper . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
5553, 54syldan 591 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
56 fveq2 6876 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑆𝑖) = (𝑆𝑗))
5756oveq1d 7420 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝑆𝑖) + 𝑇) = ((𝑆𝑗) + 𝑇))
5857cbvmptv 5225 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑁) ↦ ((𝑆𝑖) + 𝑇)) = (𝑗 ∈ (0...𝑁) ↦ ((𝑆𝑗) + 𝑇))
59 eqid 2735 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = ((𝐴𝑋) + 𝑇) ∧ (𝑝𝑚) = (𝐴 + 𝑇)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = ((𝐴𝑋) + 𝑇) ∧ (𝑝𝑚) = (𝐴 + 𝑇)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
60 fourierdlem107.f . . . . . . . . . . . 12 (𝜑𝐹:ℝ⟶ℂ)
6137adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
6238adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
6360adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
6454adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
65 fourierdlem107.fcn . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
6665adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
6724adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) ∈ ℝ)
6867rexrd 11285 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) ∈ ℝ*)
69 pnfxr 11289 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
7069a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → +∞ ∈ ℝ*)
713adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ℝ)
7239adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) < 𝐴)
733ltpnfd 13137 . . . . . . . . . . . . . . 15 (𝜑𝐴 < +∞)
7473adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 < +∞)
7568, 70, 71, 72, 74eliood 45527 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ((𝐴𝑋)(,)+∞))
76 fourierdlem107.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
77 fourierdlem107.z . . . . . . . . . . . . 13 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
78 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
79 eqid 2735 . . . . . . . . . . . . 13 ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))
80 eqid 2735 . . . . . . . . . . . . 13 (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))
81 eqid 2735 . . . . . . . . . . . . 13 (𝑦 ∈ (((𝑍‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝑍‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))))
82 fourierdlem107.i . . . . . . . . . . . . 13 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
8336, 1, 61, 62, 63, 64, 66, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 80, 81, 82fourierdlem90 46225 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
84 fourierdlem107.r . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
8584adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
86 eqid 2735 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
8736, 1, 61, 62, 63, 64, 66, 85, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 82, 86fourierdlem89 46224 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝑍‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝑍‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
88 fourierdlem107.l . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
8988adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
90 eqid 2735 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
9136, 1, 61, 62, 63, 64, 66, 89, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 82, 90fourierdlem91 46226 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
9224, 3, 35, 45, 47, 48, 55, 58, 59, 60, 83, 87, 91fourierdlem92 46227 . . . . . . . . . . 11 (𝜑 → ∫(((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇))(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
9323, 92eqtrd 2770 . . . . . . . . . 10 (𝜑 → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
9460adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝐹:ℝ⟶ℂ)
9514adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → (𝐵𝑋) ∈ ℝ)
968adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝐵 ∈ ℝ)
97 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝑥 ∈ ((𝐵𝑋)[,]𝐵))
98 eliccre 45534 . . . . . . . . . . . . 13 (((𝐵𝑋) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝑥 ∈ ℝ)
9995, 96, 97, 98syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝑥 ∈ ℝ)
10094, 99ffvelcdmd 7075 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
10114rexrd 11285 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝑋) ∈ ℝ*)
10269a1i 11 . . . . . . . . . . . . 13 (𝜑 → +∞ ∈ ℝ*)
1038, 5ltsubrpd 13083 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝑋) < 𝐵)
1048ltpnfd 13137 . . . . . . . . . . . . 13 (𝜑𝐵 < +∞)
105101, 102, 8, 103, 104eliood 45527 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ((𝐵𝑋)(,)+∞))
10636, 1, 37, 38, 60, 54, 65, 84, 88, 14, 105fourierdlem105 46240 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ((𝐵𝑋)[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
107100, 106itgcl 25737 . . . . . . . . . 10 (𝜑 → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
10893, 107eqeltrrd 2835 . . . . . . . . 9 (𝜑 → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
109108subidd 11582 . . . . . . . 8 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = 0)
110109eqcomd 2741 . . . . . . 7 (𝜑 → 0 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
111110adantr 480 . . . . . 6 ((𝜑𝑇 < 𝑋) → 0 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
11224adantr 480 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝐴𝑋) ∈ ℝ)
1133adantr 480 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → 𝐴 ∈ ℝ)
11414adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ∈ ℝ)
11536, 37, 38fourierdlem11 46147 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
116115simp3d 1144 . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
1173, 8, 116ltled 11383 . . . . . . . . . . 11 (𝜑𝐴𝐵)
118117adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → 𝐴𝐵)
1193, 8, 6lesub1d 11844 . . . . . . . . . . 11 (𝜑 → (𝐴𝐵 ↔ (𝐴𝑋) ≤ (𝐵𝑋)))
120119adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (𝐴𝐵 ↔ (𝐴𝑋) ≤ (𝐵𝑋)))
121118, 120mpbid 232 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝐴𝑋) ≤ (𝐵𝑋))
1228adantr 480 . . . . . . . . . . 11 ((𝜑𝑇 < 𝑋) → 𝐵 ∈ ℝ)
1236adantr 480 . . . . . . . . . . 11 ((𝜑𝑇 < 𝑋) → 𝑋 ∈ ℝ)
124 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑇 < 𝑋) → 𝑇 < 𝑋)
1251, 124eqbrtrrid 5155 . . . . . . . . . . 11 ((𝜑𝑇 < 𝑋) → (𝐵𝐴) < 𝑋)
126122, 113, 123, 125ltsub23d 11842 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) < 𝐴)
127114, 113, 126ltled 11383 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ≤ 𝐴)
128112, 113, 114, 121, 127eliccd 45533 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ∈ ((𝐴𝑋)[,]𝐴))
12960adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝐹:ℝ⟶ℂ)
130129, 53ffvelcdmd 7075 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
131130adantlr 715 . . . . . . . 8 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
13224rexrd 11285 . . . . . . . . . . 11 (𝜑 → (𝐴𝑋) ∈ ℝ*)
1333, 8, 6, 116ltsub1dd 11849 . . . . . . . . . . 11 (𝜑 → (𝐴𝑋) < (𝐵𝑋))
13414ltpnfd 13137 . . . . . . . . . . 11 (𝜑 → (𝐵𝑋) < +∞)
135132, 102, 14, 133, 134eliood 45527 . . . . . . . . . 10 (𝜑 → (𝐵𝑋) ∈ ((𝐴𝑋)(,)+∞))
13636, 1, 37, 38, 60, 54, 65, 84, 88, 24, 135fourierdlem105 46240 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
137136adantr 480 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
13837adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝑀 ∈ ℕ)
13938adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝑄 ∈ (𝑃𝑀))
14060adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝐹:ℝ⟶ℂ)
14154adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
14265adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
14384adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
14488adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
145101adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ∈ ℝ*)
14669a1i 11 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → +∞ ∈ ℝ*)
147113ltpnfd 13137 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → 𝐴 < +∞)
148145, 146, 113, 126, 147eliood 45527 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝐴 ∈ ((𝐵𝑋)(,)+∞))
14936, 1, 138, 139, 140, 141, 142, 143, 144, 114, 148fourierdlem105 46240 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝑥 ∈ ((𝐵𝑋)[,]𝐴) ↦ (𝐹𝑥)) ∈ 𝐿1)
150112, 113, 128, 131, 137, 149itgspliticc 25790 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
151150oveq1d 7420 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
15260adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐹:ℝ⟶ℂ)
15324adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ∈ ℝ)
15414adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
155 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
156 eliccre 45534 . . . . . . . . . . 11 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ ∧ 𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
157153, 154, 155, 156syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
158152, 157ffvelcdmd 7075 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹𝑥) ∈ ℂ)
159158, 136itgcl 25737 . . . . . . . 8 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 ∈ ℂ)
160159adantr 480 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 ∈ ℂ)
16160adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝐹:ℝ⟶ℂ)
16214adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → (𝐵𝑋) ∈ ℝ)
1633adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝐴 ∈ ℝ)
164 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝑥 ∈ ((𝐵𝑋)[,]𝐴))
165 eliccre 45534 . . . . . . . . . . 11 (((𝐵𝑋) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
166162, 163, 164, 165syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
167161, 166ffvelcdmd 7075 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
168167adantlr 715 . . . . . . . 8 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
169168, 149itgcl 25737 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
170108adantr 480 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
171160, 169, 170addsubassd 11614 . . . . . 6 ((𝜑𝑇 < 𝑋) → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
172111, 151, 1713eqtrd 2774 . . . . 5 ((𝜑𝑇 < 𝑋) → 0 = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
173172oveq2d 7421 . . . 4 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − 0) = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))))
174160subid1d 11583 . . . 4 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − 0) = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥)
175159subidd 11582 . . . . . . 7 (𝜑 → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) = 0)
176175oveq1d 7420 . . . . . 6 (𝜑 → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
177176adantr 480 . . . . 5 ((𝜑𝑇 < 𝑋) → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
178169, 170subcld 11594 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) ∈ ℂ)
179160, 160, 178subsub4d 11625 . . . . 5 ((𝜑𝑇 < 𝑋) → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))))
180 df-neg 11469 . . . . . 6 -(∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
181169, 170negsubdi2d 11610 . . . . . 6 ((𝜑𝑇 < 𝑋) → -(∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
182180, 181eqtr3id 2784 . . . . 5 ((𝜑𝑇 < 𝑋) → (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
183177, 179, 1823eqtr3d 2778 . . . 4 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
184173, 174, 1833eqtr3d 2778 . . 3 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
185107subidd 11582 . . . . . . . 8 (𝜑 → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = 0)
186185eqcomd 2741 . . . . . . 7 (𝜑 → 0 = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
187186oveq2d 7421 . . . . . 6 (𝜑 → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + 0) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
188187adantr 480 . . . . 5 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + 0) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
189169addridd 11435 . . . . 5 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + 0) = ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
190114, 122, 113, 127, 118eliccd 45533 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝐴 ∈ ((𝐵𝑋)[,]𝐵))
191100adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
1923, 8iccssred 13451 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
19360, 192feqresmpt 6948 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
19460, 192fssresd 6745 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℂ)
195 ioossicc 13450 . . . . . . . . . . . . . . 15 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
1963rexrd 11285 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ*)
197196adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ*)
1988rexrd 11285 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ*)
199198adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐵 ∈ ℝ*)
20036, 37, 38fourierdlem15 46151 . . . . . . . . . . . . . . . . 17 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
201200adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
202 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
203197, 199, 201, 202fourierdlem8 46144 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
204195, 203sstrid 3970 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
205204resabs1d 5995 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
206205, 65eqeltrd 2834 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
207205eqcomd 2741 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
208207oveq1d 7420 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
20984, 208eleqtrd 2836 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
210207oveq1d 7420 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
21188, 210eleqtrd 2836 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
21236, 37, 38, 194, 206, 209, 211fourierdlem69 46204 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ 𝐿1)
213193, 212eqeltrrd 2835 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
214213adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
215114, 122, 190, 191, 149, 214itgspliticc 25790 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
216215oveq2d 7421 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
217216oveq2d 7421 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))))
218107adantr 480 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
219215, 218eqeltrrd 2835 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) ∈ ℂ)
220169, 218, 219addsub12d 11617 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))))
22160adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
2223adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
2238adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
224 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
225 eliccre 45534 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
226222, 223, 224, 225syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
227221, 226ffvelcdmd 7075 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
228227, 213itgcl 25737 . . . . . . . . . . 11 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
229228adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
230169, 169, 229subsub4d 11625 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
231230eqcomd 2741 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
232231oveq2d 7421 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
233169subidd 11582 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = 0)
234233oveq1d 7420 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (0 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
235 df-neg 11469 . . . . . . . . 9 -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = (0 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
236234, 235eqtr4di 2788 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
237236oveq2d 7421 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
238218, 229negsubd 11600 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
239232, 237, 2383eqtrd 2774 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
240217, 220, 2393eqtrd 2774 . . . . 5 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
241188, 189, 2403eqtr3d 2778 . . . 4 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
242241oveq2d 7421 . . 3 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
243108, 107, 228subsubd 11622 . . . . 5 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ((∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
24493oveq2d 7421 . . . . . . 7 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
245244, 109eqtrd 2770 . . . . . 6 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = 0)
246245oveq1d 7420 . . . . 5 (𝜑 → ((∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (0 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
247228addlidd 11436 . . . . 5 (𝜑 → (0 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
248243, 246, 2473eqtrd 2774 . . . 4 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
249248adantr 480 . . 3 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
250184, 242, 2493eqtrd 2774 . 2 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
25124adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝐴𝑋) ∈ ℝ)
25214adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝐵𝑋) ∈ ℝ)
2533adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → 𝐴 ∈ ℝ)
25424, 3, 39ltled 11383 . . . . . . 7 (𝜑 → (𝐴𝑋) ≤ 𝐴)
255254adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → (𝐴𝑋) ≤ 𝐴)
2566adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → 𝑋 ∈ ℝ)
2578adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → 𝐵 ∈ ℝ)
258 id 22 . . . . . . . . 9 (𝑋𝑇𝑋𝑇)
259258, 1breqtrdi 5160 . . . . . . . 8 (𝑋𝑇𝑋 ≤ (𝐵𝐴))
260259adantl 481 . . . . . . 7 ((𝜑𝑋𝑇) → 𝑋 ≤ (𝐵𝐴))
261256, 257, 253, 260lesubd 11841 . . . . . 6 ((𝜑𝑋𝑇) → 𝐴 ≤ (𝐵𝑋))
262251, 252, 253, 255, 261eliccd 45533 . . . . 5 ((𝜑𝑋𝑇) → 𝐴 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
263158adantlr 715 . . . . 5 (((𝜑𝑋𝑇) ∧ 𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹𝑥) ∈ ℂ)
264132, 102, 3, 39, 73eliood 45527 . . . . . . 7 (𝜑𝐴 ∈ ((𝐴𝑋)(,)+∞))
26536, 1, 37, 38, 60, 54, 65, 84, 88, 24, 264fourierdlem105 46240 . . . . . 6 (𝜑 → (𝑥 ∈ ((𝐴𝑋)[,]𝐴) ↦ (𝐹𝑥)) ∈ 𝐿1)
266265adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝑥 ∈ ((𝐴𝑋)[,]𝐴) ↦ (𝐹𝑥)) ∈ 𝐿1)
2673leidd 11803 . . . . . . . 8 (𝜑𝐴𝐴)
2685rpge0d 13055 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑋)
2698, 6subge02d 11829 . . . . . . . . 9 (𝜑 → (0 ≤ 𝑋 ↔ (𝐵𝑋) ≤ 𝐵))
270268, 269mpbid 232 . . . . . . . 8 (𝜑 → (𝐵𝑋) ≤ 𝐵)
271 iccss 13431 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐴 ∧ (𝐵𝑋) ≤ 𝐵)) → (𝐴[,](𝐵𝑋)) ⊆ (𝐴[,]𝐵))
2723, 8, 267, 270, 271syl22anc 838 . . . . . . 7 (𝜑 → (𝐴[,](𝐵𝑋)) ⊆ (𝐴[,]𝐵))
273 iccmbl 25519 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ) → (𝐴[,](𝐵𝑋)) ∈ dom vol)
2743, 14, 273syl2anc 584 . . . . . . 7 (𝜑 → (𝐴[,](𝐵𝑋)) ∈ dom vol)
275272, 274, 227, 213iblss 25758 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
276275adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝑥 ∈ (𝐴[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
277251, 252, 262, 263, 266, 276itgspliticc 25790 . . . 4 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥))
278268adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑇) → 0 ≤ 𝑋)
279269adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑇) → (0 ≤ 𝑋 ↔ (𝐵𝑋) ≤ 𝐵))
280278, 279mpbid 232 . . . . . . . . 9 ((𝜑𝑋𝑇) → (𝐵𝑋) ≤ 𝐵)
281253, 257, 252, 261, 280eliccd 45533 . . . . . . . 8 ((𝜑𝑋𝑇) → (𝐵𝑋) ∈ (𝐴[,]𝐵))
282227adantlr 715 . . . . . . . 8 (((𝜑𝑋𝑇) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2838leidd 11803 . . . . . . . . . . 11 (𝜑𝐵𝐵)
284283adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑇) → 𝐵𝐵)
285 iccss 13431 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ (𝐵𝑋) ∧ 𝐵𝐵)) → ((𝐵𝑋)[,]𝐵) ⊆ (𝐴[,]𝐵))
286253, 257, 261, 284, 285syl22anc 838 . . . . . . . . 9 ((𝜑𝑋𝑇) → ((𝐵𝑋)[,]𝐵) ⊆ (𝐴[,]𝐵))
287 iccmbl 25519 . . . . . . . . . . 11 (((𝐵𝑋) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝑋)[,]𝐵) ∈ dom vol)
28814, 8, 287syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋)[,]𝐵) ∈ dom vol)
289288adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑇) → ((𝐵𝑋)[,]𝐵) ∈ dom vol)
290213adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑇) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
291286, 289, 282, 290iblss 25758 . . . . . . . 8 ((𝜑𝑋𝑇) → (𝑥 ∈ ((𝐵𝑋)[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
292253, 257, 281, 282, 276, 291itgspliticc 25790 . . . . . . 7 ((𝜑𝑋𝑇) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
293292oveq1d 7420 . . . . . 6 ((𝜑𝑋𝑇) → (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = ((∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
29460adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝐹:ℝ⟶ℂ)
2953adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝐴 ∈ ℝ)
29614adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
297 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝑥 ∈ (𝐴[,](𝐵𝑋)))
298 eliccre 45534 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ ∧ 𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
299295, 296, 297, 298syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
300294, 299ffvelcdmd 7075 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → (𝐹𝑥) ∈ ℂ)
301300, 275itgcl 25737 . . . . . . . 8 (𝜑 → ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 ∈ ℂ)
302301, 107, 107addsubassd 11614 . . . . . . 7 (𝜑 → ((∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
303302adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → ((∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
304185oveq2d 7421 . . . . . . . 8 (𝜑 → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + 0))
305301addridd 11435 . . . . . . . 8 (𝜑 → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + 0) = ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥)
306304, 305eqtrd 2770 . . . . . . 7 (𝜑 → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥)
307306adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥)
308293, 303, 3073eqtrrd 2775 . . . . 5 ((𝜑𝑋𝑇) → ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 = (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
309308oveq2d 7421 . . . 4 ((𝜑𝑋𝑇) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
31093adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
311107adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
312310, 311eqeltrrd 2835 . . . . . 6 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
313282, 290itgcl 25737 . . . . . 6 ((𝜑𝑋𝑇) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
314312, 313, 311addsub12d 11617 . . . . 5 ((𝜑𝑋𝑇) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
315313, 312, 311addsubassd 11614 . . . . 5 ((𝜑𝑋𝑇) → ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
316314, 315eqtr4d 2773 . . . 4 ((𝜑𝑋𝑇) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
317277, 309, 3163eqtrd 2774 . . 3 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
318310oveq2d 7421 . . 3 ((𝜑𝑋𝑇) → ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
319313, 312pncand 11595 . . 3 ((𝜑𝑋𝑇) → ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
320317, 318, 3193eqtrd 2774 . 2 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
321250, 320, 47, 6ltlecasei 11343 1 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  cun 3924  wss 3926  ifcif 4500  {cpr 4603   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  cres 5656  cio 6482  wf 6527  cfv 6531   Isom wiso 6532  (class class class)co 7405  m cmap 8840  supcsup 9452  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  cmin 11466  -cneg 11467   / cdiv 11894  cn 12240  cz 12588  +crp 13008  (,)cioo 13362  (,]cioc 13363  [,]cicc 13365  ...cfz 13524  ..^cfzo 13671  cfl 13807  chash 14348  cnccncf 24820  volcvol 25416  𝐿1cibl 25570  citg 25571   lim climc 25815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-symdif 4228  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-ovol 25417  df-vol 25418  df-mbf 25572  df-itg1 25573  df-itg2 25574  df-ibl 25575  df-itg 25576  df-0p 25623  df-ditg 25800  df-limc 25819  df-dv 25820
This theorem is referenced by:  fourierdlem108  46243
  Copyright terms: Public domain W3C validator