Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem107 Structured version   Visualization version   GIF version

Theorem fourierdlem107 46169
Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 46154 where the integral was shifted by the exact period. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem107.a (𝜑𝐴 ∈ ℝ)
fourierdlem107.b (𝜑𝐵 ∈ ℝ)
fourierdlem107.t 𝑇 = (𝐵𝐴)
fourierdlem107.x (𝜑𝑋 ∈ ℝ+)
fourierdlem107.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem107.m (𝜑𝑀 ∈ ℕ)
fourierdlem107.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem107.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem107.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem107.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem107.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem107.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem107.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem107.h 𝐻 = ({(𝐴𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem107.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem107.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem107.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem107.z 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem107.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem107 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑓,𝑘,𝑦   𝐴,𝑖,𝑥,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖   𝐵,𝑓,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑓,𝐸,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑥,𝑦   𝑓,𝐻,𝑦   𝑥,𝐻   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑥,𝐿,𝑦   𝑖,𝑀,𝑥,𝑦   𝑚,𝑀,𝑝   𝑓,𝑁,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅,𝑦   𝑆,𝑓,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑝   𝑇,𝑓,𝑘,𝑦   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑓,𝑋,𝑦   𝑖,𝑋,𝑚,𝑝   𝑥,𝑋   𝑖,𝑍,𝑥,𝑦   𝜑,𝑓,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑅(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑆(𝑚)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑖,𝑘,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝐿(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑀(𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑋(𝑘)   𝑍(𝑓,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem107
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem107.t . . . . . . . . . . . . . . . . 17 𝑇 = (𝐵𝐴)
21oveq2i 7442 . . . . . . . . . . . . . . . 16 ((𝐴𝑋) + 𝑇) = ((𝐴𝑋) + (𝐵𝐴))
3 fourierdlem107.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ)
43recnd 11287 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℂ)
5 fourierdlem107.x . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ ℝ+)
65rpred 13075 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
76recnd 11287 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ℂ)
8 fourierdlem107.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ)
98recnd 11287 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℂ)
104, 7, 9, 4subadd4b 45233 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴𝑋) + (𝐵𝐴)) = ((𝐴𝐴) + (𝐵𝑋)))
112, 10eqtrid 2787 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝑋) + 𝑇) = ((𝐴𝐴) + (𝐵𝑋)))
124subidd 11606 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝐴) = 0)
1312oveq1d 7446 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐴) + (𝐵𝑋)) = (0 + (𝐵𝑋)))
148, 6resubcld 11689 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑋) ∈ ℝ)
1514recnd 11287 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝑋) ∈ ℂ)
1615addlidd 11460 . . . . . . . . . . . . . . 15 (𝜑 → (0 + (𝐵𝑋)) = (𝐵𝑋))
1711, 13, 163eqtrd 2779 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝑋) + 𝑇) = (𝐵𝑋))
181oveq2i 7442 . . . . . . . . . . . . . . 15 (𝐴 + 𝑇) = (𝐴 + (𝐵𝐴))
194, 9pncan3d 11621 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
2018, 19eqtrid 2787 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑇) = 𝐵)
2117, 20oveq12d 7449 . . . . . . . . . . . . 13 (𝜑 → (((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇)) = ((𝐵𝑋)[,]𝐵))
2221eqcomd 2741 . . . . . . . . . . . 12 (𝜑 → ((𝐵𝑋)[,]𝐵) = (((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇)))
2322itgeq1d 45913 . . . . . . . . . . 11 (𝜑 → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇))(𝐹𝑥) d𝑥)
243, 6resubcld 11689 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑋) ∈ ℝ)
25 fourierdlem107.o . . . . . . . . . . . . 13 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
26 fveq2 6907 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
27 oveq1 7438 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
2827fveq2d 6911 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
2926, 28breq12d 5161 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
3029cbvralvw 3235 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
3130a1i 11 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
3231anbi2d 630 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → ((((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
3332rabbidv 3441 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
3433mpteq2ia 5251 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
3525, 34eqtri 2763 . . . . . . . . . . . 12 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
36 fourierdlem107.p . . . . . . . . . . . . . . 15 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
37 fourierdlem107.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
38 fourierdlem107.q . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ (𝑃𝑀))
393, 5ltsubrpd 13107 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑋) < 𝐴)
40 fourierdlem107.h . . . . . . . . . . . . . . 15 𝐻 = ({(𝐴𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
41 fourierdlem107.n . . . . . . . . . . . . . . 15 𝑁 = ((♯‘𝐻) − 1)
42 fourierdlem107.s . . . . . . . . . . . . . . 15 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
431, 36, 37, 38, 24, 3, 39, 25, 40, 41, 42fourierdlem54 46116 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
4443simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
4544simpld 494 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
468, 3resubcld 11689 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℝ)
471, 46eqeltrid 2843 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
4844simprd 495 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (𝑂𝑁))
4924adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐴𝑋) ∈ ℝ)
503adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝐴 ∈ ℝ)
51 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝑥 ∈ ((𝐴𝑋)[,]𝐴))
52 eliccre 45458 . . . . . . . . . . . . . 14 (((𝐴𝑋) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
5349, 50, 51, 52syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
54 fourierdlem107.fper . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
5553, 54syldan 591 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
56 fveq2 6907 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑆𝑖) = (𝑆𝑗))
5756oveq1d 7446 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝑆𝑖) + 𝑇) = ((𝑆𝑗) + 𝑇))
5857cbvmptv 5261 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑁) ↦ ((𝑆𝑖) + 𝑇)) = (𝑗 ∈ (0...𝑁) ↦ ((𝑆𝑗) + 𝑇))
59 eqid 2735 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = ((𝐴𝑋) + 𝑇) ∧ (𝑝𝑚) = (𝐴 + 𝑇)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = ((𝐴𝑋) + 𝑇) ∧ (𝑝𝑚) = (𝐴 + 𝑇)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
60 fourierdlem107.f . . . . . . . . . . . 12 (𝜑𝐹:ℝ⟶ℂ)
6137adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
6238adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
6360adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
6454adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
65 fourierdlem107.fcn . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
6665adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
6724adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) ∈ ℝ)
6867rexrd 11309 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) ∈ ℝ*)
69 pnfxr 11313 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
7069a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → +∞ ∈ ℝ*)
713adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ℝ)
7239adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) < 𝐴)
733ltpnfd 13161 . . . . . . . . . . . . . . 15 (𝜑𝐴 < +∞)
7473adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 < +∞)
7568, 70, 71, 72, 74eliood 45451 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ((𝐴𝑋)(,)+∞))
76 fourierdlem107.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
77 fourierdlem107.z . . . . . . . . . . . . 13 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
78 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
79 eqid 2735 . . . . . . . . . . . . 13 ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))
80 eqid 2735 . . . . . . . . . . . . 13 (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))
81 eqid 2735 . . . . . . . . . . . . 13 (𝑦 ∈ (((𝑍‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝑍‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))))
82 fourierdlem107.i . . . . . . . . . . . . 13 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
8336, 1, 61, 62, 63, 64, 66, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 80, 81, 82fourierdlem90 46152 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
84 fourierdlem107.r . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
8584adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
86 eqid 2735 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
8736, 1, 61, 62, 63, 64, 66, 85, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 82, 86fourierdlem89 46151 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝑍‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝑍‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
88 fourierdlem107.l . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
8988adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
90 eqid 2735 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
9136, 1, 61, 62, 63, 64, 66, 89, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 82, 90fourierdlem91 46153 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
9224, 3, 35, 45, 47, 48, 55, 58, 59, 60, 83, 87, 91fourierdlem92 46154 . . . . . . . . . . 11 (𝜑 → ∫(((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇))(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
9323, 92eqtrd 2775 . . . . . . . . . 10 (𝜑 → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
9460adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝐹:ℝ⟶ℂ)
9514adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → (𝐵𝑋) ∈ ℝ)
968adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝐵 ∈ ℝ)
97 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝑥 ∈ ((𝐵𝑋)[,]𝐵))
98 eliccre 45458 . . . . . . . . . . . . 13 (((𝐵𝑋) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝑥 ∈ ℝ)
9995, 96, 97, 98syl3anc 1370 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝑥 ∈ ℝ)
10094, 99ffvelcdmd 7105 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
10114rexrd 11309 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝑋) ∈ ℝ*)
10269a1i 11 . . . . . . . . . . . . 13 (𝜑 → +∞ ∈ ℝ*)
1038, 5ltsubrpd 13107 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝑋) < 𝐵)
1048ltpnfd 13161 . . . . . . . . . . . . 13 (𝜑𝐵 < +∞)
105101, 102, 8, 103, 104eliood 45451 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ((𝐵𝑋)(,)+∞))
10636, 1, 37, 38, 60, 54, 65, 84, 88, 14, 105fourierdlem105 46167 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ((𝐵𝑋)[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
107100, 106itgcl 25834 . . . . . . . . . 10 (𝜑 → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
10893, 107eqeltrrd 2840 . . . . . . . . 9 (𝜑 → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
109108subidd 11606 . . . . . . . 8 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = 0)
110109eqcomd 2741 . . . . . . 7 (𝜑 → 0 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
111110adantr 480 . . . . . 6 ((𝜑𝑇 < 𝑋) → 0 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
11224adantr 480 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝐴𝑋) ∈ ℝ)
1133adantr 480 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → 𝐴 ∈ ℝ)
11414adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ∈ ℝ)
11536, 37, 38fourierdlem11 46074 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
116115simp3d 1143 . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
1173, 8, 116ltled 11407 . . . . . . . . . . 11 (𝜑𝐴𝐵)
118117adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → 𝐴𝐵)
1193, 8, 6lesub1d 11868 . . . . . . . . . . 11 (𝜑 → (𝐴𝐵 ↔ (𝐴𝑋) ≤ (𝐵𝑋)))
120119adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (𝐴𝐵 ↔ (𝐴𝑋) ≤ (𝐵𝑋)))
121118, 120mpbid 232 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝐴𝑋) ≤ (𝐵𝑋))
1228adantr 480 . . . . . . . . . . 11 ((𝜑𝑇 < 𝑋) → 𝐵 ∈ ℝ)
1236adantr 480 . . . . . . . . . . 11 ((𝜑𝑇 < 𝑋) → 𝑋 ∈ ℝ)
124 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑇 < 𝑋) → 𝑇 < 𝑋)
1251, 124eqbrtrrid 5184 . . . . . . . . . . 11 ((𝜑𝑇 < 𝑋) → (𝐵𝐴) < 𝑋)
126122, 113, 123, 125ltsub23d 11866 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) < 𝐴)
127114, 113, 126ltled 11407 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ≤ 𝐴)
128112, 113, 114, 121, 127eliccd 45457 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ∈ ((𝐴𝑋)[,]𝐴))
12960adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝐹:ℝ⟶ℂ)
130129, 53ffvelcdmd 7105 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
131130adantlr 715 . . . . . . . 8 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
13224rexrd 11309 . . . . . . . . . . 11 (𝜑 → (𝐴𝑋) ∈ ℝ*)
1333, 8, 6, 116ltsub1dd 11873 . . . . . . . . . . 11 (𝜑 → (𝐴𝑋) < (𝐵𝑋))
13414ltpnfd 13161 . . . . . . . . . . 11 (𝜑 → (𝐵𝑋) < +∞)
135132, 102, 14, 133, 134eliood 45451 . . . . . . . . . 10 (𝜑 → (𝐵𝑋) ∈ ((𝐴𝑋)(,)+∞))
13636, 1, 37, 38, 60, 54, 65, 84, 88, 24, 135fourierdlem105 46167 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
137136adantr 480 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
13837adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝑀 ∈ ℕ)
13938adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝑄 ∈ (𝑃𝑀))
14060adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝐹:ℝ⟶ℂ)
14154adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
14265adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
14384adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
14488adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
145101adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ∈ ℝ*)
14669a1i 11 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → +∞ ∈ ℝ*)
147113ltpnfd 13161 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → 𝐴 < +∞)
148145, 146, 113, 126, 147eliood 45451 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝐴 ∈ ((𝐵𝑋)(,)+∞))
14936, 1, 138, 139, 140, 141, 142, 143, 144, 114, 148fourierdlem105 46167 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝑥 ∈ ((𝐵𝑋)[,]𝐴) ↦ (𝐹𝑥)) ∈ 𝐿1)
150112, 113, 128, 131, 137, 149itgspliticc 25887 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
151150oveq1d 7446 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
15260adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐹:ℝ⟶ℂ)
15324adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ∈ ℝ)
15414adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
155 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
156 eliccre 45458 . . . . . . . . . . 11 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ ∧ 𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
157153, 154, 155, 156syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
158152, 157ffvelcdmd 7105 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹𝑥) ∈ ℂ)
159158, 136itgcl 25834 . . . . . . . 8 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 ∈ ℂ)
160159adantr 480 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 ∈ ℂ)
16160adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝐹:ℝ⟶ℂ)
16214adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → (𝐵𝑋) ∈ ℝ)
1633adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝐴 ∈ ℝ)
164 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝑥 ∈ ((𝐵𝑋)[,]𝐴))
165 eliccre 45458 . . . . . . . . . . 11 (((𝐵𝑋) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
166162, 163, 164, 165syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
167161, 166ffvelcdmd 7105 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
168167adantlr 715 . . . . . . . 8 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
169168, 149itgcl 25834 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
170108adantr 480 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
171160, 169, 170addsubassd 11638 . . . . . 6 ((𝜑𝑇 < 𝑋) → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
172111, 151, 1713eqtrd 2779 . . . . 5 ((𝜑𝑇 < 𝑋) → 0 = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
173172oveq2d 7447 . . . 4 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − 0) = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))))
174160subid1d 11607 . . . 4 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − 0) = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥)
175159subidd 11606 . . . . . . 7 (𝜑 → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) = 0)
176175oveq1d 7446 . . . . . 6 (𝜑 → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
177176adantr 480 . . . . 5 ((𝜑𝑇 < 𝑋) → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
178169, 170subcld 11618 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) ∈ ℂ)
179160, 160, 178subsub4d 11649 . . . . 5 ((𝜑𝑇 < 𝑋) → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))))
180 df-neg 11493 . . . . . 6 -(∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
181169, 170negsubdi2d 11634 . . . . . 6 ((𝜑𝑇 < 𝑋) → -(∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
182180, 181eqtr3id 2789 . . . . 5 ((𝜑𝑇 < 𝑋) → (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
183177, 179, 1823eqtr3d 2783 . . . 4 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
184173, 174, 1833eqtr3d 2783 . . 3 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
185107subidd 11606 . . . . . . . 8 (𝜑 → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = 0)
186185eqcomd 2741 . . . . . . 7 (𝜑 → 0 = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
187186oveq2d 7447 . . . . . 6 (𝜑 → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + 0) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
188187adantr 480 . . . . 5 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + 0) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
189169addridd 11459 . . . . 5 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + 0) = ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
190114, 122, 113, 127, 118eliccd 45457 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝐴 ∈ ((𝐵𝑋)[,]𝐵))
191100adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
1923, 8iccssred 13471 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
19360, 192feqresmpt 6978 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
19460, 192fssresd 6776 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℂ)
195 ioossicc 13470 . . . . . . . . . . . . . . 15 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
1963rexrd 11309 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ*)
197196adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ*)
1988rexrd 11309 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ*)
199198adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐵 ∈ ℝ*)
20036, 37, 38fourierdlem15 46078 . . . . . . . . . . . . . . . . 17 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
201200adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
202 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
203197, 199, 201, 202fourierdlem8 46071 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
204195, 203sstrid 4007 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
205204resabs1d 6028 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
206205, 65eqeltrd 2839 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
207205eqcomd 2741 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
208207oveq1d 7446 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
20984, 208eleqtrd 2841 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
210207oveq1d 7446 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
21188, 210eleqtrd 2841 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
21236, 37, 38, 194, 206, 209, 211fourierdlem69 46131 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ 𝐿1)
213193, 212eqeltrrd 2840 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
214213adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
215114, 122, 190, 191, 149, 214itgspliticc 25887 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
216215oveq2d 7447 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
217216oveq2d 7447 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))))
218107adantr 480 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
219215, 218eqeltrrd 2840 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) ∈ ℂ)
220169, 218, 219addsub12d 11641 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))))
22160adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
2223adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
2238adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
224 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
225 eliccre 45458 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
226222, 223, 224, 225syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
227221, 226ffvelcdmd 7105 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
228227, 213itgcl 25834 . . . . . . . . . . 11 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
229228adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
230169, 169, 229subsub4d 11649 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
231230eqcomd 2741 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
232231oveq2d 7447 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
233169subidd 11606 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = 0)
234233oveq1d 7446 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (0 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
235 df-neg 11493 . . . . . . . . 9 -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = (0 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
236234, 235eqtr4di 2793 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
237236oveq2d 7447 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
238218, 229negsubd 11624 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
239232, 237, 2383eqtrd 2779 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
240217, 220, 2393eqtrd 2779 . . . . 5 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
241188, 189, 2403eqtr3d 2783 . . . 4 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
242241oveq2d 7447 . . 3 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
243108, 107, 228subsubd 11646 . . . . 5 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ((∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
24493oveq2d 7447 . . . . . . 7 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
245244, 109eqtrd 2775 . . . . . 6 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = 0)
246245oveq1d 7446 . . . . 5 (𝜑 → ((∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (0 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
247228addlidd 11460 . . . . 5 (𝜑 → (0 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
248243, 246, 2473eqtrd 2779 . . . 4 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
249248adantr 480 . . 3 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
250184, 242, 2493eqtrd 2779 . 2 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
25124adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝐴𝑋) ∈ ℝ)
25214adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝐵𝑋) ∈ ℝ)
2533adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → 𝐴 ∈ ℝ)
25424, 3, 39ltled 11407 . . . . . . 7 (𝜑 → (𝐴𝑋) ≤ 𝐴)
255254adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → (𝐴𝑋) ≤ 𝐴)
2566adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → 𝑋 ∈ ℝ)
2578adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → 𝐵 ∈ ℝ)
258 id 22 . . . . . . . . 9 (𝑋𝑇𝑋𝑇)
259258, 1breqtrdi 5189 . . . . . . . 8 (𝑋𝑇𝑋 ≤ (𝐵𝐴))
260259adantl 481 . . . . . . 7 ((𝜑𝑋𝑇) → 𝑋 ≤ (𝐵𝐴))
261256, 257, 253, 260lesubd 11865 . . . . . 6 ((𝜑𝑋𝑇) → 𝐴 ≤ (𝐵𝑋))
262251, 252, 253, 255, 261eliccd 45457 . . . . 5 ((𝜑𝑋𝑇) → 𝐴 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
263158adantlr 715 . . . . 5 (((𝜑𝑋𝑇) ∧ 𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹𝑥) ∈ ℂ)
264132, 102, 3, 39, 73eliood 45451 . . . . . . 7 (𝜑𝐴 ∈ ((𝐴𝑋)(,)+∞))
26536, 1, 37, 38, 60, 54, 65, 84, 88, 24, 264fourierdlem105 46167 . . . . . 6 (𝜑 → (𝑥 ∈ ((𝐴𝑋)[,]𝐴) ↦ (𝐹𝑥)) ∈ 𝐿1)
266265adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝑥 ∈ ((𝐴𝑋)[,]𝐴) ↦ (𝐹𝑥)) ∈ 𝐿1)
2673leidd 11827 . . . . . . . 8 (𝜑𝐴𝐴)
2685rpge0d 13079 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑋)
2698, 6subge02d 11853 . . . . . . . . 9 (𝜑 → (0 ≤ 𝑋 ↔ (𝐵𝑋) ≤ 𝐵))
270268, 269mpbid 232 . . . . . . . 8 (𝜑 → (𝐵𝑋) ≤ 𝐵)
271 iccss 13452 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐴 ∧ (𝐵𝑋) ≤ 𝐵)) → (𝐴[,](𝐵𝑋)) ⊆ (𝐴[,]𝐵))
2723, 8, 267, 270, 271syl22anc 839 . . . . . . 7 (𝜑 → (𝐴[,](𝐵𝑋)) ⊆ (𝐴[,]𝐵))
273 iccmbl 25615 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ) → (𝐴[,](𝐵𝑋)) ∈ dom vol)
2743, 14, 273syl2anc 584 . . . . . . 7 (𝜑 → (𝐴[,](𝐵𝑋)) ∈ dom vol)
275272, 274, 227, 213iblss 25855 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
276275adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝑥 ∈ (𝐴[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
277251, 252, 262, 263, 266, 276itgspliticc 25887 . . . 4 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥))
278268adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑇) → 0 ≤ 𝑋)
279269adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑇) → (0 ≤ 𝑋 ↔ (𝐵𝑋) ≤ 𝐵))
280278, 279mpbid 232 . . . . . . . . 9 ((𝜑𝑋𝑇) → (𝐵𝑋) ≤ 𝐵)
281253, 257, 252, 261, 280eliccd 45457 . . . . . . . 8 ((𝜑𝑋𝑇) → (𝐵𝑋) ∈ (𝐴[,]𝐵))
282227adantlr 715 . . . . . . . 8 (((𝜑𝑋𝑇) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2838leidd 11827 . . . . . . . . . . 11 (𝜑𝐵𝐵)
284283adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑇) → 𝐵𝐵)
285 iccss 13452 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ (𝐵𝑋) ∧ 𝐵𝐵)) → ((𝐵𝑋)[,]𝐵) ⊆ (𝐴[,]𝐵))
286253, 257, 261, 284, 285syl22anc 839 . . . . . . . . 9 ((𝜑𝑋𝑇) → ((𝐵𝑋)[,]𝐵) ⊆ (𝐴[,]𝐵))
287 iccmbl 25615 . . . . . . . . . . 11 (((𝐵𝑋) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝑋)[,]𝐵) ∈ dom vol)
28814, 8, 287syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋)[,]𝐵) ∈ dom vol)
289288adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑇) → ((𝐵𝑋)[,]𝐵) ∈ dom vol)
290213adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑇) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
291286, 289, 282, 290iblss 25855 . . . . . . . 8 ((𝜑𝑋𝑇) → (𝑥 ∈ ((𝐵𝑋)[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
292253, 257, 281, 282, 276, 291itgspliticc 25887 . . . . . . 7 ((𝜑𝑋𝑇) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
293292oveq1d 7446 . . . . . 6 ((𝜑𝑋𝑇) → (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = ((∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
29460adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝐹:ℝ⟶ℂ)
2953adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝐴 ∈ ℝ)
29614adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
297 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝑥 ∈ (𝐴[,](𝐵𝑋)))
298 eliccre 45458 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ ∧ 𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
299295, 296, 297, 298syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
300294, 299ffvelcdmd 7105 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → (𝐹𝑥) ∈ ℂ)
301300, 275itgcl 25834 . . . . . . . 8 (𝜑 → ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 ∈ ℂ)
302301, 107, 107addsubassd 11638 . . . . . . 7 (𝜑 → ((∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
303302adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → ((∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
304185oveq2d 7447 . . . . . . . 8 (𝜑 → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + 0))
305301addridd 11459 . . . . . . . 8 (𝜑 → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + 0) = ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥)
306304, 305eqtrd 2775 . . . . . . 7 (𝜑 → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥)
307306adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥)
308293, 303, 3073eqtrrd 2780 . . . . 5 ((𝜑𝑋𝑇) → ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 = (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
309308oveq2d 7447 . . . 4 ((𝜑𝑋𝑇) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
31093adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
311107adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
312310, 311eqeltrrd 2840 . . . . . 6 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
313282, 290itgcl 25834 . . . . . 6 ((𝜑𝑋𝑇) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
314312, 313, 311addsub12d 11641 . . . . 5 ((𝜑𝑋𝑇) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
315313, 312, 311addsubassd 11638 . . . . 5 ((𝜑𝑋𝑇) → ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
316314, 315eqtr4d 2778 . . . 4 ((𝜑𝑋𝑇) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
317277, 309, 3163eqtrd 2779 . . 3 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
318310oveq2d 7447 . . 3 ((𝜑𝑋𝑇) → ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
319313, 312pncand 11619 . . 3 ((𝜑𝑋𝑇) → ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
320317, 318, 3193eqtrd 2779 . 2 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
321250, 320, 47, 6ltlecasei 11367 1 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  cun 3961  wss 3963  ifcif 4531  {cpr 4633   class class class wbr 5148  cmpt 5231  dom cdm 5689  ran crn 5690  cres 5691  cio 6514  wf 6559  cfv 6563   Isom wiso 6564  (class class class)co 7431  m cmap 8865  supcsup 9478  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  cz 12611  +crp 13032  (,)cioo 13384  (,]cioc 13385  [,]cicc 13387  ...cfz 13544  ..^cfzo 13691  cfl 13827  chash 14366  cnccncf 24916  volcvol 25512  𝐿1cibl 25666  citg 25667   lim climc 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-symdif 4259  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670  df-ibl 25671  df-itg 25672  df-0p 25719  df-ditg 25897  df-limc 25916  df-dv 25917
This theorem is referenced by:  fourierdlem108  46170
  Copyright terms: Public domain W3C validator