Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem107 Structured version   Visualization version   GIF version

Theorem fourierdlem107 46251
Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 46236 where the integral was shifted by the exact period. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem107.a (𝜑𝐴 ∈ ℝ)
fourierdlem107.b (𝜑𝐵 ∈ ℝ)
fourierdlem107.t 𝑇 = (𝐵𝐴)
fourierdlem107.x (𝜑𝑋 ∈ ℝ+)
fourierdlem107.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem107.m (𝜑𝑀 ∈ ℕ)
fourierdlem107.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem107.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem107.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem107.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem107.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem107.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem107.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem107.h 𝐻 = ({(𝐴𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem107.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem107.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem107.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem107.z 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem107.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem107 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑓,𝑘,𝑦   𝐴,𝑖,𝑥,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖   𝐵,𝑓,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑓,𝐸,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑥,𝑦   𝑓,𝐻,𝑦   𝑥,𝐻   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑥,𝐿,𝑦   𝑖,𝑀,𝑥,𝑦   𝑚,𝑀,𝑝   𝑓,𝑁,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅,𝑦   𝑆,𝑓,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑝   𝑇,𝑓,𝑘,𝑦   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑓,𝑋,𝑦   𝑖,𝑋,𝑚,𝑝   𝑥,𝑋   𝑖,𝑍,𝑥,𝑦   𝜑,𝑓,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑅(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑆(𝑚)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑖,𝑘,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝐿(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑀(𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑋(𝑘)   𝑍(𝑓,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem107
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem107.t . . . . . . . . . . . . . . . . 17 𝑇 = (𝐵𝐴)
21oveq2i 7352 . . . . . . . . . . . . . . . 16 ((𝐴𝑋) + 𝑇) = ((𝐴𝑋) + (𝐵𝐴))
3 fourierdlem107.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ)
43recnd 11135 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℂ)
5 fourierdlem107.x . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ ℝ+)
65rpred 12929 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
76recnd 11135 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ℂ)
8 fourierdlem107.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ)
98recnd 11135 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℂ)
104, 7, 9, 4subadd4b 45324 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴𝑋) + (𝐵𝐴)) = ((𝐴𝐴) + (𝐵𝑋)))
112, 10eqtrid 2778 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝑋) + 𝑇) = ((𝐴𝐴) + (𝐵𝑋)))
124subidd 11455 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝐴) = 0)
1312oveq1d 7356 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐴) + (𝐵𝑋)) = (0 + (𝐵𝑋)))
148, 6resubcld 11540 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑋) ∈ ℝ)
1514recnd 11135 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝑋) ∈ ℂ)
1615addlidd 11309 . . . . . . . . . . . . . . 15 (𝜑 → (0 + (𝐵𝑋)) = (𝐵𝑋))
1711, 13, 163eqtrd 2770 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝑋) + 𝑇) = (𝐵𝑋))
181oveq2i 7352 . . . . . . . . . . . . . . 15 (𝐴 + 𝑇) = (𝐴 + (𝐵𝐴))
194, 9pncan3d 11470 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
2018, 19eqtrid 2778 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑇) = 𝐵)
2117, 20oveq12d 7359 . . . . . . . . . . . . 13 (𝜑 → (((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇)) = ((𝐵𝑋)[,]𝐵))
2221eqcomd 2737 . . . . . . . . . . . 12 (𝜑 → ((𝐵𝑋)[,]𝐵) = (((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇)))
2322itgeq1d 45995 . . . . . . . . . . 11 (𝜑 → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇))(𝐹𝑥) d𝑥)
243, 6resubcld 11540 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑋) ∈ ℝ)
25 fourierdlem107.o . . . . . . . . . . . . 13 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
26 fveq2 6817 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
27 oveq1 7348 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
2827fveq2d 6821 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
2926, 28breq12d 5099 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
3029cbvralvw 3210 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
3130a1i 11 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
3231anbi2d 630 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → ((((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
3332rabbidv 3402 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
3433mpteq2ia 5181 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
3525, 34eqtri 2754 . . . . . . . . . . . 12 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
36 fourierdlem107.p . . . . . . . . . . . . . . 15 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
37 fourierdlem107.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
38 fourierdlem107.q . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ (𝑃𝑀))
393, 5ltsubrpd 12961 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑋) < 𝐴)
40 fourierdlem107.h . . . . . . . . . . . . . . 15 𝐻 = ({(𝐴𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
41 fourierdlem107.n . . . . . . . . . . . . . . 15 𝑁 = ((♯‘𝐻) − 1)
42 fourierdlem107.s . . . . . . . . . . . . . . 15 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
431, 36, 37, 38, 24, 3, 39, 25, 40, 41, 42fourierdlem54 46198 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
4443simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
4544simpld 494 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
468, 3resubcld 11540 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℝ)
471, 46eqeltrid 2835 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
4844simprd 495 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (𝑂𝑁))
4924adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐴𝑋) ∈ ℝ)
503adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝐴 ∈ ℝ)
51 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝑥 ∈ ((𝐴𝑋)[,]𝐴))
52 eliccre 45545 . . . . . . . . . . . . . 14 (((𝐴𝑋) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
5349, 50, 51, 52syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
54 fourierdlem107.fper . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
5553, 54syldan 591 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
56 fveq2 6817 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑆𝑖) = (𝑆𝑗))
5756oveq1d 7356 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝑆𝑖) + 𝑇) = ((𝑆𝑗) + 𝑇))
5857cbvmptv 5190 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑁) ↦ ((𝑆𝑖) + 𝑇)) = (𝑗 ∈ (0...𝑁) ↦ ((𝑆𝑗) + 𝑇))
59 eqid 2731 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = ((𝐴𝑋) + 𝑇) ∧ (𝑝𝑚) = (𝐴 + 𝑇)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = ((𝐴𝑋) + 𝑇) ∧ (𝑝𝑚) = (𝐴 + 𝑇)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
60 fourierdlem107.f . . . . . . . . . . . 12 (𝜑𝐹:ℝ⟶ℂ)
6137adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
6238adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
6360adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
6454adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
65 fourierdlem107.fcn . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
6665adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
6724adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) ∈ ℝ)
6867rexrd 11157 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) ∈ ℝ*)
69 pnfxr 11161 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
7069a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → +∞ ∈ ℝ*)
713adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ℝ)
7239adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) < 𝐴)
733ltpnfd 13015 . . . . . . . . . . . . . . 15 (𝜑𝐴 < +∞)
7473adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 < +∞)
7568, 70, 71, 72, 74eliood 45538 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ((𝐴𝑋)(,)+∞))
76 fourierdlem107.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
77 fourierdlem107.z . . . . . . . . . . . . 13 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
78 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
79 eqid 2731 . . . . . . . . . . . . 13 ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))
80 eqid 2731 . . . . . . . . . . . . 13 (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))
81 eqid 2731 . . . . . . . . . . . . 13 (𝑦 ∈ (((𝑍‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝑍‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))))
82 fourierdlem107.i . . . . . . . . . . . . 13 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
8336, 1, 61, 62, 63, 64, 66, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 80, 81, 82fourierdlem90 46234 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
84 fourierdlem107.r . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
8584adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
86 eqid 2731 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
8736, 1, 61, 62, 63, 64, 66, 85, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 82, 86fourierdlem89 46233 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝑍‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝑍‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
88 fourierdlem107.l . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
8988adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
90 eqid 2731 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
9136, 1, 61, 62, 63, 64, 66, 89, 67, 75, 25, 40, 41, 42, 76, 77, 78, 79, 82, 90fourierdlem91 46235 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
9224, 3, 35, 45, 47, 48, 55, 58, 59, 60, 83, 87, 91fourierdlem92 46236 . . . . . . . . . . 11 (𝜑 → ∫(((𝐴𝑋) + 𝑇)[,](𝐴 + 𝑇))(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
9323, 92eqtrd 2766 . . . . . . . . . 10 (𝜑 → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
9460adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝐹:ℝ⟶ℂ)
9514adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → (𝐵𝑋) ∈ ℝ)
968adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝐵 ∈ ℝ)
97 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝑥 ∈ ((𝐵𝑋)[,]𝐵))
98 eliccre 45545 . . . . . . . . . . . . 13 (((𝐵𝑋) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝑥 ∈ ℝ)
9995, 96, 97, 98syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → 𝑥 ∈ ℝ)
10094, 99ffvelcdmd 7013 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
10114rexrd 11157 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝑋) ∈ ℝ*)
10269a1i 11 . . . . . . . . . . . . 13 (𝜑 → +∞ ∈ ℝ*)
1038, 5ltsubrpd 12961 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝑋) < 𝐵)
1048ltpnfd 13015 . . . . . . . . . . . . 13 (𝜑𝐵 < +∞)
105101, 102, 8, 103, 104eliood 45538 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ((𝐵𝑋)(,)+∞))
10636, 1, 37, 38, 60, 54, 65, 84, 88, 14, 105fourierdlem105 46249 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ((𝐵𝑋)[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
107100, 106itgcl 25707 . . . . . . . . . 10 (𝜑 → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
10893, 107eqeltrrd 2832 . . . . . . . . 9 (𝜑 → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
109108subidd 11455 . . . . . . . 8 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = 0)
110109eqcomd 2737 . . . . . . 7 (𝜑 → 0 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
111110adantr 480 . . . . . 6 ((𝜑𝑇 < 𝑋) → 0 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
11224adantr 480 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝐴𝑋) ∈ ℝ)
1133adantr 480 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → 𝐴 ∈ ℝ)
11414adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ∈ ℝ)
11536, 37, 38fourierdlem11 46156 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
116115simp3d 1144 . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
1173, 8, 116ltled 11256 . . . . . . . . . . 11 (𝜑𝐴𝐵)
118117adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → 𝐴𝐵)
1193, 8, 6lesub1d 11719 . . . . . . . . . . 11 (𝜑 → (𝐴𝐵 ↔ (𝐴𝑋) ≤ (𝐵𝑋)))
120119adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (𝐴𝐵 ↔ (𝐴𝑋) ≤ (𝐵𝑋)))
121118, 120mpbid 232 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝐴𝑋) ≤ (𝐵𝑋))
1228adantr 480 . . . . . . . . . . 11 ((𝜑𝑇 < 𝑋) → 𝐵 ∈ ℝ)
1236adantr 480 . . . . . . . . . . 11 ((𝜑𝑇 < 𝑋) → 𝑋 ∈ ℝ)
124 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑇 < 𝑋) → 𝑇 < 𝑋)
1251, 124eqbrtrrid 5122 . . . . . . . . . . 11 ((𝜑𝑇 < 𝑋) → (𝐵𝐴) < 𝑋)
126122, 113, 123, 125ltsub23d 11717 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) < 𝐴)
127114, 113, 126ltled 11256 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ≤ 𝐴)
128112, 113, 114, 121, 127eliccd 45544 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ∈ ((𝐴𝑋)[,]𝐴))
12960adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → 𝐹:ℝ⟶ℂ)
130129, 53ffvelcdmd 7013 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
131130adantlr 715 . . . . . . . 8 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐴𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
13224rexrd 11157 . . . . . . . . . . 11 (𝜑 → (𝐴𝑋) ∈ ℝ*)
1333, 8, 6, 116ltsub1dd 11724 . . . . . . . . . . 11 (𝜑 → (𝐴𝑋) < (𝐵𝑋))
13414ltpnfd 13015 . . . . . . . . . . 11 (𝜑 → (𝐵𝑋) < +∞)
135132, 102, 14, 133, 134eliood 45538 . . . . . . . . . 10 (𝜑 → (𝐵𝑋) ∈ ((𝐴𝑋)(,)+∞))
13636, 1, 37, 38, 60, 54, 65, 84, 88, 24, 135fourierdlem105 46249 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
137136adantr 480 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
13837adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝑀 ∈ ℕ)
13938adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝑄 ∈ (𝑃𝑀))
14060adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝐹:ℝ⟶ℂ)
14154adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
14265adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
14384adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
14488adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
145101adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (𝐵𝑋) ∈ ℝ*)
14669a1i 11 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → +∞ ∈ ℝ*)
147113ltpnfd 13015 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → 𝐴 < +∞)
148145, 146, 113, 126, 147eliood 45538 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝐴 ∈ ((𝐵𝑋)(,)+∞))
14936, 1, 138, 139, 140, 141, 142, 143, 144, 114, 148fourierdlem105 46249 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (𝑥 ∈ ((𝐵𝑋)[,]𝐴) ↦ (𝐹𝑥)) ∈ 𝐿1)
150112, 113, 128, 131, 137, 149itgspliticc 25760 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
151150oveq1d 7356 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
15260adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐹:ℝ⟶ℂ)
15324adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ∈ ℝ)
15414adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
155 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
156 eliccre 45545 . . . . . . . . . . 11 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ ∧ 𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
157153, 154, 155, 156syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
158152, 157ffvelcdmd 7013 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹𝑥) ∈ ℂ)
159158, 136itgcl 25707 . . . . . . . 8 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 ∈ ℂ)
160159adantr 480 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 ∈ ℂ)
16160adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝐹:ℝ⟶ℂ)
16214adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → (𝐵𝑋) ∈ ℝ)
1633adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝐴 ∈ ℝ)
164 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝑥 ∈ ((𝐵𝑋)[,]𝐴))
165 eliccre 45545 . . . . . . . . . . 11 (((𝐵𝑋) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
166162, 163, 164, 165syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → 𝑥 ∈ ℝ)
167161, 166ffvelcdmd 7013 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
168167adantlr 715 . . . . . . . 8 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐴)) → (𝐹𝑥) ∈ ℂ)
169168, 149itgcl 25707 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
170108adantr 480 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
171160, 169, 170addsubassd 11487 . . . . . 6 ((𝜑𝑇 < 𝑋) → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
172111, 151, 1713eqtrd 2770 . . . . 5 ((𝜑𝑇 < 𝑋) → 0 = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
173172oveq2d 7357 . . . 4 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − 0) = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))))
174160subid1d 11456 . . . 4 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − 0) = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥)
175159subidd 11455 . . . . . . 7 (𝜑 → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) = 0)
176175oveq1d 7356 . . . . . 6 (𝜑 → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
177176adantr 480 . . . . 5 ((𝜑𝑇 < 𝑋) → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)))
178169, 170subcld 11467 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) ∈ ℂ)
179160, 160, 178subsub4d 11498 . . . . 5 ((𝜑𝑇 < 𝑋) → ((∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥) − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))))
180 df-neg 11342 . . . . . 6 -(∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
181169, 170negsubdi2d 11483 . . . . . 6 ((𝜑𝑇 < 𝑋) → -(∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
182180, 181eqtr3id 2780 . . . . 5 ((𝜑𝑇 < 𝑋) → (0 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
183177, 179, 1823eqtr3d 2774 . . . 4 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 − (∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
184173, 174, 1833eqtr3d 2774 . . 3 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
185107subidd 11455 . . . . . . . 8 (𝜑 → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = 0)
186185eqcomd 2737 . . . . . . 7 (𝜑 → 0 = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
187186oveq2d 7357 . . . . . 6 (𝜑 → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + 0) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
188187adantr 480 . . . . 5 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + 0) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
189169addridd 11308 . . . . 5 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + 0) = ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
190114, 122, 113, 127, 118eliccd 45544 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → 𝐴 ∈ ((𝐵𝑋)[,]𝐵))
191100adantlr 715 . . . . . . . . 9 (((𝜑𝑇 < 𝑋) ∧ 𝑥 ∈ ((𝐵𝑋)[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
1923, 8iccssred 13329 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
19360, 192feqresmpt 6886 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
19460, 192fssresd 6685 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℂ)
195 ioossicc 13328 . . . . . . . . . . . . . . 15 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
1963rexrd 11157 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ*)
197196adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ*)
1988rexrd 11157 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ*)
199198adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐵 ∈ ℝ*)
20036, 37, 38fourierdlem15 46160 . . . . . . . . . . . . . . . . 17 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
201200adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
202 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
203197, 199, 201, 202fourierdlem8 46153 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
204195, 203sstrid 3941 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
205204resabs1d 5952 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
206205, 65eqeltrd 2831 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
207205eqcomd 2737 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
208207oveq1d 7356 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
20984, 208eleqtrd 2833 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
210207oveq1d 7356 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
21188, 210eleqtrd 2833 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ (𝐴[,]𝐵)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
21236, 37, 38, 194, 206, 209, 211fourierdlem69 46213 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ 𝐿1)
213193, 212eqeltrrd 2832 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
214213adantr 480 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
215114, 122, 190, 191, 149, 214itgspliticc 25760 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
216215oveq2d 7357 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
217216oveq2d 7357 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))))
218107adantr 480 . . . . . . 7 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
219215, 218eqeltrrd 2832 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) ∈ ℂ)
220169, 218, 219addsub12d 11490 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))))
22160adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
2223adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
2238adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
224 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
225 eliccre 45545 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
226222, 223, 224, 225syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
227221, 226ffvelcdmd 7013 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
228227, 213itgcl 25707 . . . . . . . . . . 11 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
229228adantr 480 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
230169, 169, 229subsub4d 11498 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
231230eqcomd 2737 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
232231oveq2d 7357 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
233169subidd 11455 . . . . . . . . . 10 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = 0)
234233oveq1d 7356 . . . . . . . . 9 ((𝜑𝑇 < 𝑋) → ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (0 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
235 df-neg 11342 . . . . . . . . 9 -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = (0 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
236234, 235eqtr4di 2784 . . . . . . . 8 ((𝜑𝑇 < 𝑋) → ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
237236oveq2d 7357 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + ((∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
238218, 229negsubd 11473 . . . . . . 7 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + -∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
239232, 237, 2383eqtrd 2770 . . . . . 6 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
240217, 220, 2393eqtrd 2770 . . . . 5 ((𝜑𝑇 < 𝑋) → (∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
241188, 189, 2403eqtr3d 2774 . . . 4 ((𝜑𝑇 < 𝑋) → ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥 = (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
242241oveq2d 7357 . . 3 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)))
243108, 107, 228subsubd 11495 . . . . 5 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ((∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
24493oveq2d 7357 . . . . . . 7 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
245244, 109eqtrd 2766 . . . . . 6 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = 0)
246245oveq1d 7356 . . . . 5 (𝜑 → ((∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = (0 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
247228addlidd 11309 . . . . 5 (𝜑 → (0 + ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
248243, 246, 2473eqtrd 2770 . . . 4 (𝜑 → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
249248adantr 480 . . 3 ((𝜑𝑇 < 𝑋) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
250184, 242, 2493eqtrd 2770 . 2 ((𝜑𝑇 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
25124adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝐴𝑋) ∈ ℝ)
25214adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝐵𝑋) ∈ ℝ)
2533adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → 𝐴 ∈ ℝ)
25424, 3, 39ltled 11256 . . . . . . 7 (𝜑 → (𝐴𝑋) ≤ 𝐴)
255254adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → (𝐴𝑋) ≤ 𝐴)
2566adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → 𝑋 ∈ ℝ)
2578adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → 𝐵 ∈ ℝ)
258 id 22 . . . . . . . . 9 (𝑋𝑇𝑋𝑇)
259258, 1breqtrdi 5127 . . . . . . . 8 (𝑋𝑇𝑋 ≤ (𝐵𝐴))
260259adantl 481 . . . . . . 7 ((𝜑𝑋𝑇) → 𝑋 ≤ (𝐵𝐴))
261256, 257, 253, 260lesubd 11716 . . . . . 6 ((𝜑𝑋𝑇) → 𝐴 ≤ (𝐵𝑋))
262251, 252, 253, 255, 261eliccd 45544 . . . . 5 ((𝜑𝑋𝑇) → 𝐴 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
263158adantlr 715 . . . . 5 (((𝜑𝑋𝑇) ∧ 𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐹𝑥) ∈ ℂ)
264132, 102, 3, 39, 73eliood 45538 . . . . . . 7 (𝜑𝐴 ∈ ((𝐴𝑋)(,)+∞))
26536, 1, 37, 38, 60, 54, 65, 84, 88, 24, 264fourierdlem105 46249 . . . . . 6 (𝜑 → (𝑥 ∈ ((𝐴𝑋)[,]𝐴) ↦ (𝐹𝑥)) ∈ 𝐿1)
266265adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝑥 ∈ ((𝐴𝑋)[,]𝐴) ↦ (𝐹𝑥)) ∈ 𝐿1)
2673leidd 11678 . . . . . . . 8 (𝜑𝐴𝐴)
2685rpge0d 12933 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑋)
2698, 6subge02d 11704 . . . . . . . . 9 (𝜑 → (0 ≤ 𝑋 ↔ (𝐵𝑋) ≤ 𝐵))
270268, 269mpbid 232 . . . . . . . 8 (𝜑 → (𝐵𝑋) ≤ 𝐵)
271 iccss 13309 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐴 ∧ (𝐵𝑋) ≤ 𝐵)) → (𝐴[,](𝐵𝑋)) ⊆ (𝐴[,]𝐵))
2723, 8, 267, 270, 271syl22anc 838 . . . . . . 7 (𝜑 → (𝐴[,](𝐵𝑋)) ⊆ (𝐴[,]𝐵))
273 iccmbl 25489 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ) → (𝐴[,](𝐵𝑋)) ∈ dom vol)
2743, 14, 273syl2anc 584 . . . . . . 7 (𝜑 → (𝐴[,](𝐵𝑋)) ∈ dom vol)
275272, 274, 227, 213iblss 25728 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
276275adantr 480 . . . . 5 ((𝜑𝑋𝑇) → (𝑥 ∈ (𝐴[,](𝐵𝑋)) ↦ (𝐹𝑥)) ∈ 𝐿1)
277251, 252, 262, 263, 266, 276itgspliticc 25760 . . . 4 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥))
278268adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑇) → 0 ≤ 𝑋)
279269adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑇) → (0 ≤ 𝑋 ↔ (𝐵𝑋) ≤ 𝐵))
280278, 279mpbid 232 . . . . . . . . 9 ((𝜑𝑋𝑇) → (𝐵𝑋) ≤ 𝐵)
281253, 257, 252, 261, 280eliccd 45544 . . . . . . . 8 ((𝜑𝑋𝑇) → (𝐵𝑋) ∈ (𝐴[,]𝐵))
282227adantlr 715 . . . . . . . 8 (((𝜑𝑋𝑇) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2838leidd 11678 . . . . . . . . . . 11 (𝜑𝐵𝐵)
284283adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑇) → 𝐵𝐵)
285 iccss 13309 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ (𝐵𝑋) ∧ 𝐵𝐵)) → ((𝐵𝑋)[,]𝐵) ⊆ (𝐴[,]𝐵))
286253, 257, 261, 284, 285syl22anc 838 . . . . . . . . 9 ((𝜑𝑋𝑇) → ((𝐵𝑋)[,]𝐵) ⊆ (𝐴[,]𝐵))
287 iccmbl 25489 . . . . . . . . . . 11 (((𝐵𝑋) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝑋)[,]𝐵) ∈ dom vol)
28814, 8, 287syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋)[,]𝐵) ∈ dom vol)
289288adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑇) → ((𝐵𝑋)[,]𝐵) ∈ dom vol)
290213adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑇) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
291286, 289, 282, 290iblss 25728 . . . . . . . 8 ((𝜑𝑋𝑇) → (𝑥 ∈ ((𝐵𝑋)[,]𝐵) ↦ (𝐹𝑥)) ∈ 𝐿1)
292253, 257, 281, 282, 276, 291itgspliticc 25760 . . . . . . 7 ((𝜑𝑋𝑇) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
293292oveq1d 7356 . . . . . 6 ((𝜑𝑋𝑇) → (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = ((∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
29460adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝐹:ℝ⟶ℂ)
2953adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝐴 ∈ ℝ)
29614adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
297 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝑥 ∈ (𝐴[,](𝐵𝑋)))
298 eliccre 45545 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ ∧ 𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
299295, 296, 297, 298syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → 𝑥 ∈ ℝ)
300294, 299ffvelcdmd 7013 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,](𝐵𝑋))) → (𝐹𝑥) ∈ ℂ)
301300, 275itgcl 25707 . . . . . . . 8 (𝜑 → ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 ∈ ℂ)
302301, 107, 107addsubassd 11487 . . . . . . 7 (𝜑 → ((∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
303302adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → ((∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
304185oveq2d 7357 . . . . . . . 8 (𝜑 → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + 0))
305301addridd 11308 . . . . . . . 8 (𝜑 → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + 0) = ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥)
306304, 305eqtrd 2766 . . . . . . 7 (𝜑 → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥)
307306adantr 480 . . . . . 6 ((𝜑𝑋𝑇) → (∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 + (∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥)
308293, 303, 3073eqtrrd 2771 . . . . 5 ((𝜑𝑋𝑇) → ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥 = (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
309308oveq2d 7357 . . . 4 ((𝜑𝑋𝑇) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + ∫(𝐴[,](𝐵𝑋))(𝐹𝑥) d𝑥) = (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
31093adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥)
311107adantr 480 . . . . . . 7 ((𝜑𝑋𝑇) → ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
312310, 311eqeltrrd 2832 . . . . . 6 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 ∈ ℂ)
313282, 290itgcl 25707 . . . . . 6 ((𝜑𝑋𝑇) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 ∈ ℂ)
314312, 313, 311addsub12d 11490 . . . . 5 ((𝜑𝑋𝑇) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
315313, 312, 311addsubassd 11487 . . . . 5 ((𝜑𝑋𝑇) → ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)))
316314, 315eqtr4d 2769 . . . 4 ((𝜑𝑋𝑇) → (∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥 + (∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥)) = ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
317277, 309, 3163eqtrd 2770 . . 3 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥))
318310oveq2d 7357 . . 3 ((𝜑𝑋𝑇) → ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐵𝑋)[,]𝐵)(𝐹𝑥) d𝑥) = ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥))
319313, 312pncand 11468 . . 3 ((𝜑𝑋𝑇) → ((∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 + ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) − ∫((𝐴𝑋)[,]𝐴)(𝐹𝑥) d𝑥) = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
320317, 318, 3193eqtrd 2770 . 2 ((𝜑𝑋𝑇) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
321250, 320, 47, 6ltlecasei 11216 1 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  cun 3895  wss 3897  ifcif 4470  {cpr 4573   class class class wbr 5086  cmpt 5167  dom cdm 5611  ran crn 5612  cres 5613  cio 6430  wf 6472  cfv 6476   Isom wiso 6477  (class class class)co 7341  m cmap 8745  supcsup 9319  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  +∞cpnf 11138  *cxr 11140   < clt 11141  cle 11142  cmin 11339  -cneg 11340   / cdiv 11769  cn 12120  cz 12463  +crp 12885  (,)cioo 13240  (,]cioc 13241  [,]cicc 13243  ...cfz 13402  ..^cfzo 13549  cfl 13689  chash 14232  cnccncf 24791  volcvol 25386  𝐿1cibl 25540  citg 25541   lim climc 25785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cc 10321  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-symdif 4198  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-disj 5054  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-ovol 25387  df-vol 25388  df-mbf 25542  df-itg1 25543  df-itg2 25544  df-ibl 25545  df-itg 25546  df-0p 25593  df-ditg 25770  df-limc 25789  df-dv 25790
This theorem is referenced by:  fourierdlem108  46252
  Copyright terms: Public domain W3C validator