MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjidm Structured version   Visualization version   GIF version

Theorem latjidm 18403
Description: Lattice join is idempotent. Analogue of unidm 4116. (Contributed by NM, 8-Oct-2011.)
Hypotheses
Ref Expression
latjidm.b 𝐵 = (Base‘𝐾)
latjidm.j = (join‘𝐾)
Assertion
Ref Expression
latjidm ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)

Proof of Theorem latjidm
StepHypRef Expression
1 latjidm.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2729 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 482 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
4 latjidm.j . . . 4 = (join‘𝐾)
51, 4latjcl 18380 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑋𝐵) → (𝑋 𝑋) ∈ 𝐵)
653anidm23 1423 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) ∈ 𝐵)
7 simpr 484 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋𝐵)
81, 2latref 18382 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
91, 2, 4latjle12 18391 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑋𝐵𝑋𝐵)) → ((𝑋(le‘𝐾)𝑋𝑋(le‘𝐾)𝑋) ↔ (𝑋 𝑋)(le‘𝐾)𝑋))
103, 7, 7, 7, 9syl13anc 1374 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ((𝑋(le‘𝐾)𝑋𝑋(le‘𝐾)𝑋) ↔ (𝑋 𝑋)(le‘𝐾)𝑋))
118, 8, 10mpbi2and 712 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋)(le‘𝐾)𝑋)
121, 2, 4latlej1 18389 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑋𝐵) → 𝑋(le‘𝐾)(𝑋 𝑋))
13123anidm23 1423 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)(𝑋 𝑋))
141, 2, 3, 6, 7, 11, 13latasymd 18386 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  Latclat 18372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-lat 18373
This theorem is referenced by:  lubsn  18423  latjjdi  18432  latjjdir  18433  cvlsupr2  39329  hlatjidm  39355  cvrat3  39429  snatpsubN  39737  dalawlem7  39864  cdleme11  40257  cdleme23b  40337  cdlemg33a  40693  trljco  40727  doca2N  41113  djajN  41124
  Copyright terms: Public domain W3C validator