![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjidm | Structured version Visualization version GIF version |
Description: Lattice join is idempotent. (Contributed by NM, 8-Oct-2011.) |
Ref | Expression |
---|---|
latidm.b | ⊢ 𝐵 = (Base‘𝐾) |
latidm.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjidm | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latidm.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2795 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | simpl 483 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) | |
4 | latidm.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
5 | 1, 4 | latjcl 17490 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) ∈ 𝐵) |
6 | 5 | 3anidm23 1414 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) ∈ 𝐵) |
7 | simpr 485 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
8 | 1, 2 | latref 17492 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
9 | 1, 2, 4 | latjle12 17501 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ (𝑋 ∨ 𝑋)(le‘𝐾)𝑋)) |
10 | 3, 7, 7, 7, 9 | syl13anc 1365 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ (𝑋 ∨ 𝑋)(le‘𝐾)𝑋)) |
11 | 8, 8, 10 | mpbi2and 708 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋)(le‘𝐾)𝑋) |
12 | 1, 2, 4 | latlej1 17499 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑋)) |
13 | 12 | 3anidm23 1414 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑋)) |
14 | 1, 2, 3, 6, 7, 11, 13 | latasymd 17496 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 class class class wbr 4962 ‘cfv 6225 (class class class)co 7016 Basecbs 16312 lecple 16401 joincjn 17383 Latclat 17484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-proset 17367 df-poset 17385 df-lub 17413 df-glb 17414 df-join 17415 df-meet 17416 df-lat 17485 |
This theorem is referenced by: lubsn 17533 latjjdi 17542 latjjdir 17543 cvlsupr2 36029 hlatjidm 36055 cvrat3 36128 snatpsubN 36436 dalawlem7 36563 cdleme11 36956 cdleme23b 37036 cdlemg33a 37392 trljco 37426 doca2N 37812 djajN 37823 |
Copyright terms: Public domain | W3C validator |