MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjidm Structured version   Visualization version   GIF version

Theorem latjidm 17389
Description: Lattice join is idempotent. (Contributed by NM, 8-Oct-2011.)
Hypotheses
Ref Expression
latidm.b 𝐵 = (Base‘𝐾)
latidm.j = (join‘𝐾)
Assertion
Ref Expression
latjidm ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)

Proof of Theorem latjidm
StepHypRef Expression
1 latidm.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2799 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 475 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
4 latidm.j . . . 4 = (join‘𝐾)
51, 4latjcl 17366 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑋𝐵) → (𝑋 𝑋) ∈ 𝐵)
653anidm23 1545 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) ∈ 𝐵)
7 simpr 478 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋𝐵)
81, 2latref 17368 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
91, 2, 4latjle12 17377 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑋𝐵𝑋𝐵)) → ((𝑋(le‘𝐾)𝑋𝑋(le‘𝐾)𝑋) ↔ (𝑋 𝑋)(le‘𝐾)𝑋))
103, 7, 7, 7, 9syl13anc 1492 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ((𝑋(le‘𝐾)𝑋𝑋(le‘𝐾)𝑋) ↔ (𝑋 𝑋)(le‘𝐾)𝑋))
118, 8, 10mpbi2and 704 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋)(le‘𝐾)𝑋)
121, 2, 4latlej1 17375 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑋𝐵) → 𝑋(le‘𝐾)(𝑋 𝑋))
13123anidm23 1545 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)(𝑋 𝑋))
141, 2, 3, 6, 7, 11, 13latasymd 17372 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157   class class class wbr 4843  cfv 6101  (class class class)co 6878  Basecbs 16184  lecple 16274  joincjn 17259  Latclat 17360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-proset 17243  df-poset 17261  df-lub 17289  df-glb 17290  df-join 17291  df-meet 17292  df-lat 17361
This theorem is referenced by:  lubsn  17409  latjjdi  17418  latjjdir  17419  cvlsupr2  35364  hlatjidm  35390  cvrat3  35463  snatpsubN  35771  dalawlem7  35898  cdleme11  36291  cdleme23b  36371  cdlemg33a  36727  trljco  36761  doca2N  37147  djajN  37158
  Copyright terms: Public domain W3C validator