![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjidm | Structured version Visualization version GIF version |
Description: Lattice join is idempotent. Analogue of unidm 4180. (Contributed by NM, 8-Oct-2011.) |
Ref | Expression |
---|---|
latjidm.b | ⊢ 𝐵 = (Base‘𝐾) |
latjidm.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjidm | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latjidm.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2740 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | simpl 482 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) | |
4 | latjidm.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
5 | 1, 4 | latjcl 18509 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) ∈ 𝐵) |
6 | 5 | 3anidm23 1421 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) ∈ 𝐵) |
7 | simpr 484 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
8 | 1, 2 | latref 18511 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
9 | 1, 2, 4 | latjle12 18520 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ (𝑋 ∨ 𝑋)(le‘𝐾)𝑋)) |
10 | 3, 7, 7, 7, 9 | syl13anc 1372 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ (𝑋 ∨ 𝑋)(le‘𝐾)𝑋)) |
11 | 8, 8, 10 | mpbi2and 711 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋)(le‘𝐾)𝑋) |
12 | 1, 2, 4 | latlej1 18518 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑋)) |
13 | 12 | 3anidm23 1421 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑋)) |
14 | 1, 2, 3, 6, 7, 11, 13 | latasymd 18515 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 joincjn 18381 Latclat 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-lat 18502 |
This theorem is referenced by: lubsn 18552 latjjdi 18561 latjjdir 18562 cvlsupr2 39299 hlatjidm 39325 cvrat3 39399 snatpsubN 39707 dalawlem7 39834 cdleme11 40227 cdleme23b 40307 cdlemg33a 40663 trljco 40697 doca2N 41083 djajN 41094 |
Copyright terms: Public domain | W3C validator |