|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > latjidm | Structured version Visualization version GIF version | ||
| Description: Lattice join is idempotent. Analogue of unidm 4156. (Contributed by NM, 8-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| latjidm.b | ⊢ 𝐵 = (Base‘𝐾) | 
| latjidm.j | ⊢ ∨ = (join‘𝐾) | 
| Ref | Expression | 
|---|---|
| latjidm | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | latjidm.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2736 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | simpl 482 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 4 | latjidm.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 5 | 1, 4 | latjcl 18485 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) ∈ 𝐵) | 
| 6 | 5 | 3anidm23 1422 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) ∈ 𝐵) | 
| 7 | simpr 484 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 8 | 1, 2 | latref 18487 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) | 
| 9 | 1, 2, 4 | latjle12 18496 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ (𝑋 ∨ 𝑋)(le‘𝐾)𝑋)) | 
| 10 | 3, 7, 7, 7, 9 | syl13anc 1373 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ (𝑋 ∨ 𝑋)(le‘𝐾)𝑋)) | 
| 11 | 8, 8, 10 | mpbi2and 712 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋)(le‘𝐾)𝑋) | 
| 12 | 1, 2, 4 | latlej1 18494 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑋)) | 
| 13 | 12 | 3anidm23 1422 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑋)) | 
| 14 | 1, 2, 3, 6, 7, 11, 13 | latasymd 18491 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 lecple 17305 joincjn 18358 Latclat 18477 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-proset 18341 df-poset 18360 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-lat 18478 | 
| This theorem is referenced by: lubsn 18528 latjjdi 18537 latjjdir 18538 cvlsupr2 39345 hlatjidm 39371 cvrat3 39445 snatpsubN 39753 dalawlem7 39880 cdleme11 40273 cdleme23b 40353 cdlemg33a 40709 trljco 40743 doca2N 41129 djajN 41140 | 
| Copyright terms: Public domain | W3C validator |