| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjidm | Structured version Visualization version GIF version | ||
| Description: Lattice join is idempotent. Analogue of unidm 4104. (Contributed by NM, 8-Oct-2011.) |
| Ref | Expression |
|---|---|
| latjidm.b | ⊢ 𝐵 = (Base‘𝐾) |
| latjidm.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjidm | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjidm.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2731 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | simpl 482 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 4 | latjidm.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 5 | 1, 4 | latjcl 18345 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) ∈ 𝐵) |
| 6 | 5 | 3anidm23 1423 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) ∈ 𝐵) |
| 7 | simpr 484 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 8 | 1, 2 | latref 18347 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 9 | 1, 2, 4 | latjle12 18356 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ (𝑋 ∨ 𝑋)(le‘𝐾)𝑋)) |
| 10 | 3, 7, 7, 7, 9 | syl13anc 1374 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ (𝑋 ∨ 𝑋)(le‘𝐾)𝑋)) |
| 11 | 8, 8, 10 | mpbi2and 712 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋)(le‘𝐾)𝑋) |
| 12 | 1, 2, 4 | latlej1 18354 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑋)) |
| 13 | 12 | 3anidm23 1423 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑋)) |
| 14 | 1, 2, 3, 6, 7, 11, 13 | latasymd 18351 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-lat 18338 |
| This theorem is referenced by: lubsn 18388 latjjdi 18397 latjjdir 18398 cvlsupr2 39441 hlatjidm 39467 cvrat3 39540 snatpsubN 39848 dalawlem7 39975 cdleme11 40368 cdleme23b 40448 cdlemg33a 40804 trljco 40838 doca2N 41224 djajN 41235 |
| Copyright terms: Public domain | W3C validator |