MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjidm Structured version   Visualization version   GIF version

Theorem latjidm 18095
Description: Lattice join is idempotent. Analogue of unidm 4082. (Contributed by NM, 8-Oct-2011.)
Hypotheses
Ref Expression
latjidm.b 𝐵 = (Base‘𝐾)
latjidm.j = (join‘𝐾)
Assertion
Ref Expression
latjidm ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)

Proof of Theorem latjidm
StepHypRef Expression
1 latjidm.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2738 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 482 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
4 latjidm.j . . . 4 = (join‘𝐾)
51, 4latjcl 18072 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑋𝐵) → (𝑋 𝑋) ∈ 𝐵)
653anidm23 1419 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) ∈ 𝐵)
7 simpr 484 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋𝐵)
81, 2latref 18074 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
91, 2, 4latjle12 18083 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑋𝐵𝑋𝐵)) → ((𝑋(le‘𝐾)𝑋𝑋(le‘𝐾)𝑋) ↔ (𝑋 𝑋)(le‘𝐾)𝑋))
103, 7, 7, 7, 9syl13anc 1370 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ((𝑋(le‘𝐾)𝑋𝑋(le‘𝐾)𝑋) ↔ (𝑋 𝑋)(le‘𝐾)𝑋))
118, 8, 10mpbi2and 708 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋)(le‘𝐾)𝑋)
121, 2, 4latlej1 18081 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑋𝐵) → 𝑋(le‘𝐾)(𝑋 𝑋))
13123anidm23 1419 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)(𝑋 𝑋))
141, 2, 3, 6, 7, 11, 13latasymd 18078 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  Latclat 18064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-lat 18065
This theorem is referenced by:  lubsn  18115  latjjdi  18124  latjjdir  18125  cvlsupr2  37284  hlatjidm  37310  cvrat3  37383  snatpsubN  37691  dalawlem7  37818  cdleme11  38211  cdleme23b  38291  cdlemg33a  38647  trljco  38681  doca2N  39067  djajN  39078
  Copyright terms: Public domain W3C validator