![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjidm | Structured version Visualization version GIF version |
Description: Lattice join is idempotent. Analogue of unidm 4151. (Contributed by NM, 8-Oct-2011.) |
Ref | Expression |
---|---|
latjidm.b | β’ π΅ = (BaseβπΎ) |
latjidm.j | β’ β¨ = (joinβπΎ) |
Ref | Expression |
---|---|
latjidm | β’ ((πΎ β Lat β§ π β π΅) β (π β¨ π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latjidm.b | . 2 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2732 | . 2 β’ (leβπΎ) = (leβπΎ) | |
3 | simpl 483 | . 2 β’ ((πΎ β Lat β§ π β π΅) β πΎ β Lat) | |
4 | latjidm.j | . . . 4 β’ β¨ = (joinβπΎ) | |
5 | 1, 4 | latjcl 18388 | . . 3 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (π β¨ π) β π΅) |
6 | 5 | 3anidm23 1421 | . 2 β’ ((πΎ β Lat β§ π β π΅) β (π β¨ π) β π΅) |
7 | simpr 485 | . 2 β’ ((πΎ β Lat β§ π β π΅) β π β π΅) | |
8 | 1, 2 | latref 18390 | . . 3 β’ ((πΎ β Lat β§ π β π΅) β π(leβπΎ)π) |
9 | 1, 2, 4 | latjle12 18399 | . . . 4 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π(leβπΎ)π β§ π(leβπΎ)π) β (π β¨ π)(leβπΎ)π)) |
10 | 3, 7, 7, 7, 9 | syl13anc 1372 | . . 3 β’ ((πΎ β Lat β§ π β π΅) β ((π(leβπΎ)π β§ π(leβπΎ)π) β (π β¨ π)(leβπΎ)π)) |
11 | 8, 8, 10 | mpbi2and 710 | . 2 β’ ((πΎ β Lat β§ π β π΅) β (π β¨ π)(leβπΎ)π) |
12 | 1, 2, 4 | latlej1 18397 | . . 3 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β π(leβπΎ)(π β¨ π)) |
13 | 12 | 3anidm23 1421 | . 2 β’ ((πΎ β Lat β§ π β π΅) β π(leβπΎ)(π β¨ π)) |
14 | 1, 2, 3, 6, 7, 11, 13 | latasymd 18394 | 1 β’ ((πΎ β Lat β§ π β π΅) β (π β¨ π) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 class class class wbr 5147 βcfv 6540 (class class class)co 7405 Basecbs 17140 lecple 17200 joincjn 18260 Latclat 18380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-lat 18381 |
This theorem is referenced by: lubsn 18431 latjjdi 18440 latjjdir 18441 cvlsupr2 38201 hlatjidm 38227 cvrat3 38301 snatpsubN 38609 dalawlem7 38736 cdleme11 39129 cdleme23b 39209 cdlemg33a 39565 trljco 39599 doca2N 39985 djajN 39996 |
Copyright terms: Public domain | W3C validator |