Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latmidm | Structured version Visualization version GIF version |
Description: Lattice meet is idempotent. Analogue of inidm 4154. (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
latmidm.b | ⊢ 𝐵 = (Base‘𝐾) |
latmidm.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmidm | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmidm.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2738 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | simpl 483 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) | |
4 | latmidm.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | 1, 4 | latmcl 18156 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) ∈ 𝐵) |
6 | 5 | 3anidm23 1420 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) ∈ 𝐵) |
7 | simpr 485 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
8 | 1, 2, 4 | latmle1 18180 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋)(le‘𝐾)𝑋) |
9 | 8 | 3anidm23 1420 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋)(le‘𝐾)𝑋) |
10 | 1, 2 | latref 18157 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
11 | 1, 2, 4 | latlem12 18182 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ 𝑋(le‘𝐾)(𝑋 ∧ 𝑋))) |
12 | 3, 7, 7, 7, 11 | syl13anc 1371 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ 𝑋(le‘𝐾)(𝑋 ∧ 𝑋))) |
13 | 10, 10, 12 | mpbi2and 709 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∧ 𝑋)) |
14 | 1, 2, 3, 6, 7, 9, 13 | latasymd 18161 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5076 ‘cfv 6435 (class class class)co 7277 Basecbs 16910 lecple 16967 meetcmee 18028 Latclat 18147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-proset 18011 df-poset 18029 df-lub 18062 df-glb 18063 df-join 18064 df-meet 18065 df-lat 18148 |
This theorem is referenced by: latmmdiN 37245 latmmdir 37246 2llnm3N 37580 |
Copyright terms: Public domain | W3C validator |