![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latmidm | Structured version Visualization version GIF version |
Description: Lattice meet is idempotent. Analogue of inidm 4217. (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
latmidm.b | ⊢ 𝐵 = (Base‘𝐾) |
latmidm.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmidm | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmidm.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2725 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | simpl 481 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) | |
4 | latmidm.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | 1, 4 | latmcl 18435 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) ∈ 𝐵) |
6 | 5 | 3anidm23 1418 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) ∈ 𝐵) |
7 | simpr 483 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
8 | 1, 2, 4 | latmle1 18459 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋)(le‘𝐾)𝑋) |
9 | 8 | 3anidm23 1418 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋)(le‘𝐾)𝑋) |
10 | 1, 2 | latref 18436 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
11 | 1, 2, 4 | latlem12 18461 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ 𝑋(le‘𝐾)(𝑋 ∧ 𝑋))) |
12 | 3, 7, 7, 7, 11 | syl13anc 1369 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ 𝑋(le‘𝐾)(𝑋 ∧ 𝑋))) |
13 | 10, 10, 12 | mpbi2and 710 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∧ 𝑋)) |
14 | 1, 2, 3, 6, 7, 9, 13 | latasymd 18440 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 lecple 17243 meetcmee 18307 Latclat 18426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-proset 18290 df-poset 18308 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-lat 18427 |
This theorem is referenced by: latmmdiN 38836 latmmdir 38837 2llnm3N 39172 |
Copyright terms: Public domain | W3C validator |