MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmidm Structured version   Visualization version   GIF version

Theorem latmidm 18192
Description: Lattice meet is idempotent. Analogue of inidm 4152. (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
latmidm.b 𝐵 = (Base‘𝐾)
latmidm.m = (meet‘𝐾)
Assertion
Ref Expression
latmidm ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)

Proof of Theorem latmidm
StepHypRef Expression
1 latmidm.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2738 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 483 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
4 latmidm.m . . . 4 = (meet‘𝐾)
51, 4latmcl 18158 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑋𝐵) → (𝑋 𝑋) ∈ 𝐵)
653anidm23 1420 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) ∈ 𝐵)
7 simpr 485 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋𝐵)
81, 2, 4latmle1 18182 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑋𝐵) → (𝑋 𝑋)(le‘𝐾)𝑋)
983anidm23 1420 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋)(le‘𝐾)𝑋)
101, 2latref 18159 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
111, 2, 4latlem12 18184 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑋𝐵𝑋𝐵)) → ((𝑋(le‘𝐾)𝑋𝑋(le‘𝐾)𝑋) ↔ 𝑋(le‘𝐾)(𝑋 𝑋)))
123, 7, 7, 7, 11syl13anc 1371 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ((𝑋(le‘𝐾)𝑋𝑋(le‘𝐾)𝑋) ↔ 𝑋(le‘𝐾)(𝑋 𝑋)))
1310, 10, 12mpbi2and 709 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)(𝑋 𝑋))
141, 2, 3, 6, 7, 9, 13latasymd 18163 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  meetcmee 18030  Latclat 18149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-lat 18150
This theorem is referenced by:  latmmdiN  37248  latmmdir  37249  2llnm3N  37583
  Copyright terms: Public domain W3C validator