MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjass Structured version   Visualization version   GIF version

Theorem latjass 18389
Description: Lattice join is associative. Lemma 2.2 in [MegPav2002] p. 362. (chjass 31477 analog.) (Contributed by NM, 17-Sep-2011.)
Hypotheses
Ref Expression
latjass.b 𝐵 = (Base‘𝐾)
latjass.j = (join‘𝐾)
Assertion
Ref Expression
latjass ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))

Proof of Theorem latjass
StepHypRef Expression
1 latjass.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2729 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 482 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
4 latjass.j . . . . 5 = (join‘𝐾)
51, 4latjcl 18345 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
653adant3r3 1185 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
7 simpr3 1197 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
81, 4latjcl 18345 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
93, 6, 7, 8syl3anc 1373 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
10 simpr1 1195 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
111, 4latjcl 18345 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
12113adant3r1 1183 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
131, 4latjcl 18345 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
143, 10, 12, 13syl3anc 1373 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
151, 2, 4latlej1 18354 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)))
163, 10, 12, 15syl3anc 1373 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)))
17 simpr2 1196 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
181, 2, 4latlej1 18354 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑌(le‘𝐾)(𝑌 𝑍))
19183adant3r1 1183 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑌 𝑍))
201, 2, 4latlej2 18355 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑌 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
213, 10, 12, 20syl3anc 1373 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
221, 2, 3, 17, 12, 14, 19, 21lattrd 18352 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍)))
231, 2, 4latjle12 18356 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵)) → ((𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍))))
243, 10, 17, 14, 23syl13anc 1374 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍))))
2516, 22, 24mpbi2and 712 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)))
261, 2, 4latlej2 18355 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑍(le‘𝐾)(𝑌 𝑍))
27263adant3r1 1183 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)(𝑌 𝑍))
281, 2, 3, 7, 12, 14, 27, 21lattrd 18352 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍)))
291, 2, 4latjle12 18356 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵𝑍𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵)) → (((𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍))))
303, 6, 7, 14, 29syl13anc 1374 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍))))
3125, 28, 30mpbi2and 712 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
321, 2, 4latlej1 18354 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
33323adant3r3 1185 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)(𝑋 𝑌))
341, 2, 4latlej1 18354 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (𝑋 𝑌)(le‘𝐾)((𝑋 𝑌) 𝑍))
353, 6, 7, 34syl3anc 1373 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌)(le‘𝐾)((𝑋 𝑌) 𝑍))
361, 2, 3, 10, 6, 9, 33, 35lattrd 18352 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)((𝑋 𝑌) 𝑍))
371, 2, 4latlej2 18355 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
38373adant3r3 1185 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑋 𝑌))
391, 2, 3, 17, 6, 9, 38, 35lattrd 18352 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)((𝑋 𝑌) 𝑍))
401, 2, 4latlej2 18355 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍))
413, 6, 7, 40syl3anc 1373 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍))
421, 2, 4latjle12 18356 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑌𝐵𝑍𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑌(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)))
433, 17, 7, 9, 42syl13anc 1374 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)))
4439, 41, 43mpbi2and 712 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍))
451, 2, 4latjle12 18356 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑋(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍)))
463, 10, 12, 9, 45syl13anc 1374 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍)))
4736, 44, 46mpbi2and 712 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍))
481, 2, 3, 9, 14, 31, 47latasymd 18351 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  Latclat 18337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-lat 18338
This theorem is referenced by:  latj12  18390  latj32  18391  latj4  18395  latmass  18401  latmassOLD  39218  hlatjass  39359  cvrexchlem  39408  cvrat3  39431  2atmat  39550  4atlem3  39585  4atlem3a  39586  4atlem4a  39588  4atlem4d  39591  4at2  39603  2lplnja  39608  pmapjlln1  39844  dalawlem3  39862  dalawlem12  39871  cdleme30a  40367  trlcolem  40715  cdlemh1  40804  cdlemkid1  40911  doca2N  41115  djajN  41126
  Copyright terms: Public domain W3C validator