MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjass Structured version   Visualization version   GIF version

Theorem latjass 17697
Description: Lattice join is associative. Lemma 2.2 in [MegPav2002] p. 362. (chjass 29316 analog.) (Contributed by NM, 17-Sep-2011.)
Hypotheses
Ref Expression
latjass.b 𝐵 = (Base‘𝐾)
latjass.j = (join‘𝐾)
Assertion
Ref Expression
latjass ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))

Proof of Theorem latjass
StepHypRef Expression
1 latjass.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2798 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 486 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
4 latjass.j . . . . 5 = (join‘𝐾)
51, 4latjcl 17653 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
653adant3r3 1181 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
7 simpr3 1193 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
81, 4latjcl 17653 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
93, 6, 7, 8syl3anc 1368 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
10 simpr1 1191 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
111, 4latjcl 17653 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
12113adant3r1 1179 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
131, 4latjcl 17653 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
143, 10, 12, 13syl3anc 1368 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
151, 2, 4latlej1 17662 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)))
163, 10, 12, 15syl3anc 1368 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)))
17 simpr2 1192 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
181, 2, 4latlej1 17662 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑌(le‘𝐾)(𝑌 𝑍))
19183adant3r1 1179 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑌 𝑍))
201, 2, 4latlej2 17663 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑌 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
213, 10, 12, 20syl3anc 1368 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
221, 2, 3, 17, 12, 14, 19, 21lattrd 17660 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍)))
231, 2, 4latjle12 17664 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵)) → ((𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍))))
243, 10, 17, 14, 23syl13anc 1369 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍))))
2516, 22, 24mpbi2and 711 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)))
261, 2, 4latlej2 17663 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑍(le‘𝐾)(𝑌 𝑍))
27263adant3r1 1179 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)(𝑌 𝑍))
281, 2, 3, 7, 12, 14, 27, 21lattrd 17660 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍)))
291, 2, 4latjle12 17664 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵𝑍𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵)) → (((𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍))))
303, 6, 7, 14, 29syl13anc 1369 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍))))
3125, 28, 30mpbi2and 711 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
321, 2, 4latlej1 17662 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
33323adant3r3 1181 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)(𝑋 𝑌))
341, 2, 4latlej1 17662 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (𝑋 𝑌)(le‘𝐾)((𝑋 𝑌) 𝑍))
353, 6, 7, 34syl3anc 1368 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌)(le‘𝐾)((𝑋 𝑌) 𝑍))
361, 2, 3, 10, 6, 9, 33, 35lattrd 17660 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)((𝑋 𝑌) 𝑍))
371, 2, 4latlej2 17663 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
38373adant3r3 1181 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑋 𝑌))
391, 2, 3, 17, 6, 9, 38, 35lattrd 17660 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)((𝑋 𝑌) 𝑍))
401, 2, 4latlej2 17663 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍))
413, 6, 7, 40syl3anc 1368 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍))
421, 2, 4latjle12 17664 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑌𝐵𝑍𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑌(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)))
433, 17, 7, 9, 42syl13anc 1369 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)))
4439, 41, 43mpbi2and 711 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍))
451, 2, 4latjle12 17664 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑋(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍)))
463, 10, 12, 9, 45syl13anc 1369 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍)))
4736, 44, 46mpbi2and 711 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍))
481, 2, 3, 9, 14, 31, 47latasymd 17659 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  Latclat 17647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-lat 17648
This theorem is referenced by:  latj12  17698  latj32  17699  latj4  17703  latmass  17790  latmassOLD  36525  hlatjass  36666  cvrexchlem  36715  cvrat3  36738  2atmat  36857  4atlem3  36892  4atlem3a  36893  4atlem4a  36895  4atlem4d  36898  4at2  36910  2lplnja  36915  pmapjlln1  37151  dalawlem3  37169  dalawlem12  37178  cdleme30a  37674  trlcolem  38022  cdlemh1  38111  cdlemkid1  38218  doca2N  38422  djajN  38433
  Copyright terms: Public domain W3C validator