MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjass Structured version   Visualization version   GIF version

Theorem latjass 18116
Description: Lattice join is associative. Lemma 2.2 in [MegPav2002] p. 362. (chjass 29796 analog.) (Contributed by NM, 17-Sep-2011.)
Hypotheses
Ref Expression
latjass.b 𝐵 = (Base‘𝐾)
latjass.j = (join‘𝐾)
Assertion
Ref Expression
latjass ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))

Proof of Theorem latjass
StepHypRef Expression
1 latjass.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2738 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 482 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
4 latjass.j . . . . 5 = (join‘𝐾)
51, 4latjcl 18072 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
653adant3r3 1182 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
7 simpr3 1194 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
81, 4latjcl 18072 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
93, 6, 7, 8syl3anc 1369 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
10 simpr1 1192 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
111, 4latjcl 18072 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
12113adant3r1 1180 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
131, 4latjcl 18072 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
143, 10, 12, 13syl3anc 1369 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
151, 2, 4latlej1 18081 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)))
163, 10, 12, 15syl3anc 1369 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)))
17 simpr2 1193 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
181, 2, 4latlej1 18081 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑌(le‘𝐾)(𝑌 𝑍))
19183adant3r1 1180 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑌 𝑍))
201, 2, 4latlej2 18082 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑌 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
213, 10, 12, 20syl3anc 1369 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
221, 2, 3, 17, 12, 14, 19, 21lattrd 18079 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍)))
231, 2, 4latjle12 18083 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵)) → ((𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍))))
243, 10, 17, 14, 23syl13anc 1370 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍))))
2516, 22, 24mpbi2and 708 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)))
261, 2, 4latlej2 18082 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑍(le‘𝐾)(𝑌 𝑍))
27263adant3r1 1180 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)(𝑌 𝑍))
281, 2, 3, 7, 12, 14, 27, 21lattrd 18079 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍)))
291, 2, 4latjle12 18083 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵𝑍𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵)) → (((𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍))))
303, 6, 7, 14, 29syl13anc 1370 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍))))
3125, 28, 30mpbi2and 708 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
321, 2, 4latlej1 18081 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
33323adant3r3 1182 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)(𝑋 𝑌))
341, 2, 4latlej1 18081 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (𝑋 𝑌)(le‘𝐾)((𝑋 𝑌) 𝑍))
353, 6, 7, 34syl3anc 1369 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌)(le‘𝐾)((𝑋 𝑌) 𝑍))
361, 2, 3, 10, 6, 9, 33, 35lattrd 18079 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)((𝑋 𝑌) 𝑍))
371, 2, 4latlej2 18082 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
38373adant3r3 1182 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑋 𝑌))
391, 2, 3, 17, 6, 9, 38, 35lattrd 18079 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)((𝑋 𝑌) 𝑍))
401, 2, 4latlej2 18082 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍))
413, 6, 7, 40syl3anc 1369 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍))
421, 2, 4latjle12 18083 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑌𝐵𝑍𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑌(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)))
433, 17, 7, 9, 42syl13anc 1370 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)))
4439, 41, 43mpbi2and 708 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍))
451, 2, 4latjle12 18083 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑋(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍)))
463, 10, 12, 9, 45syl13anc 1370 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍)))
4736, 44, 46mpbi2and 708 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍))
481, 2, 3, 9, 14, 31, 47latasymd 18078 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  Latclat 18064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-lat 18065
This theorem is referenced by:  latj12  18117  latj32  18118  latj4  18122  latmass  18128  latmassOLD  37170  hlatjass  37311  cvrexchlem  37360  cvrat3  37383  2atmat  37502  4atlem3  37537  4atlem3a  37538  4atlem4a  37540  4atlem4d  37543  4at2  37555  2lplnja  37560  pmapjlln1  37796  dalawlem3  37814  dalawlem12  37823  cdleme30a  38319  trlcolem  38667  cdlemh1  38756  cdlemkid1  38863  doca2N  39067  djajN  39078
  Copyright terms: Public domain W3C validator