Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautm Structured version   Visualization version   GIF version

Theorem lautm 40118
Description: Meet property of a lattice automorphism. (Contributed by NM, 19-May-2012.)
Hypotheses
Ref Expression
lautm.b 𝐵 = (Base‘𝐾)
lautm.m = (meet‘𝐾)
lautm.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautm ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem lautm
StepHypRef Expression
1 lautm.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2736 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 482 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐾 ∈ Lat)
4 simpr1 1195 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹𝐼)
53, 4jca 511 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐾 ∈ Lat ∧ 𝐹𝐼))
6 lautm.m . . . . 5 = (meet‘𝐾)
71, 6latmcl 18455 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
873adant3r1 1183 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 𝑌) ∈ 𝐵)
9 lautm.i . . . 4 𝐼 = (LAut‘𝐾)
101, 9lautcl 40111 . . 3 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑋 𝑌) ∈ 𝐵) → (𝐹‘(𝑋 𝑌)) ∈ 𝐵)
115, 8, 10syl2anc 584 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) ∈ 𝐵)
12 simpr2 1196 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
131, 9lautcl 40111 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
145, 12, 13syl2anc 584 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝐵)
15 simpr3 1197 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
161, 9lautcl 40111 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ 𝑌𝐵) → (𝐹𝑌) ∈ 𝐵)
175, 15, 16syl2anc 584 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝐵)
181, 6latmcl 18455 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵)
193, 14, 17, 18syl3anc 1373 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵)
201, 2, 6latmle1 18479 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑋)
21203adant3r1 1183 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 𝑌)(le‘𝐾)𝑋)
221, 2, 9lautle 40108 . . . . 5 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ ((𝑋 𝑌) ∈ 𝐵𝑋𝐵)) → ((𝑋 𝑌)(le‘𝐾)𝑋 ↔ (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑋)))
235, 8, 12, 22syl12anc 836 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝑋 𝑌)(le‘𝐾)𝑋 ↔ (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑋)))
2421, 23mpbid 232 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑋))
251, 2, 6latmle2 18480 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
26253adant3r1 1183 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 𝑌)(le‘𝐾)𝑌)
271, 2, 9lautle 40108 . . . . 5 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ ((𝑋 𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑋 𝑌)(le‘𝐾)𝑌 ↔ (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑌)))
285, 8, 15, 27syl12anc 836 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝑋 𝑌)(le‘𝐾)𝑌 ↔ (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑌)))
2926, 28mpbid 232 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑌))
301, 2, 6latlem12 18481 . . . 4 ((𝐾 ∈ Lat ∧ ((𝐹‘(𝑋 𝑌)) ∈ 𝐵 ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵)) → (((𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑋) ∧ (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑌)) ↔ (𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌))))
313, 11, 14, 17, 30syl13anc 1374 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (((𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑋) ∧ (𝐹‘(𝑋 𝑌))(le‘𝐾)(𝐹𝑌)) ↔ (𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌))))
3224, 29, 31mpbi2and 712 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
331, 9laut1o 40109 . . . . 5 ((𝐾 ∈ Lat ∧ 𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)
34333ad2antr1 1189 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹:𝐵1-1-onto𝐵)
35 f1ocnvfv2 7275 . . . 4 ((𝐹:𝐵1-1-onto𝐵 ∧ ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵) → (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))) = ((𝐹𝑋) (𝐹𝑌)))
3634, 19, 35syl2anc 584 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))) = ((𝐹𝑋) (𝐹𝑌)))
371, 2, 6latmle1 18479 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑋))
383, 14, 17, 37syl3anc 1373 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑋))
391, 2, 9lautcnvle 40113 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵 ∧ (𝐹𝑋) ∈ 𝐵)) → (((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑋) ↔ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝐹‘(𝐹𝑋))))
405, 19, 14, 39syl12anc 836 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑋) ↔ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝐹‘(𝐹𝑋))))
4138, 40mpbid 232 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝐹‘(𝐹𝑋)))
42 f1ocnvfv1 7274 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐵𝑋𝐵) → (𝐹‘(𝐹𝑋)) = 𝑋)
4334, 12, 42syl2anc 584 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹𝑋)) = 𝑋)
4441, 43breqtrd 5150 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)𝑋)
451, 2, 6latmle2 18480 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑌))
463, 14, 17, 45syl3anc 1373 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑌))
471, 2, 9lautcnvle 40113 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵)) → (((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑌) ↔ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝐹‘(𝐹𝑌))))
485, 19, 17, 47syl12anc 836 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹𝑌) ↔ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝐹‘(𝐹𝑌))))
4946, 48mpbid 232 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝐹‘(𝐹𝑌)))
50 f1ocnvfv1 7274 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐵𝑌𝐵) → (𝐹‘(𝐹𝑌)) = 𝑌)
5134, 15, 50syl2anc 584 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹𝑌)) = 𝑌)
5249, 51breqtrd 5150 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)𝑌)
53 f1ocnvdm 7283 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐵 ∧ ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵) → (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)
5434, 19, 53syl2anc 584 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)
551, 2, 6latlem12 18481 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)𝑋 ∧ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)𝑌) ↔ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝑋 𝑌)))
563, 54, 12, 15, 55syl13anc 1374 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (((𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)𝑋 ∧ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)𝑌) ↔ (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝑋 𝑌)))
5744, 52, 56mpbi2and 712 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝑋 𝑌))
581, 2, 9lautle 40108 . . . . 5 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ ((𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝑋 𝑌) ↔ (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))(le‘𝐾)(𝐹‘(𝑋 𝑌))))
595, 54, 8, 58syl12anc 836 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹‘((𝐹𝑋) (𝐹𝑌)))(le‘𝐾)(𝑋 𝑌) ↔ (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))(le‘𝐾)(𝐹‘(𝑋 𝑌))))
6057, 59mpbid 232 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))(le‘𝐾)(𝐹‘(𝑋 𝑌)))
6136, 60eqbrtrrd 5148 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹‘(𝑋 𝑌)))
621, 2, 3, 11, 19, 32, 61latasymd 18460 1 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  ccnv 5658  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  meetcmee 18329  Latclat 18446  LAutclaut 40009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-proset 18311  df-poset 18330  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-lat 18447  df-laut 40013
This theorem is referenced by:  ltrnm  40155
  Copyright terms: Public domain W3C validator