Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlmod1i Structured version   Visualization version   GIF version

Theorem hlmod1i 37912
Description: A version of the modular law pmod1i 37904 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.)
Hypotheses
Ref Expression
hlmod.b 𝐵 = (Base‘𝐾)
hlmod.l = (le‘𝐾)
hlmod.j = (join‘𝐾)
hlmod.m = (meet‘𝐾)
hlmod.f 𝐹 = (pmap‘𝐾)
hlmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
hlmod1i ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌))) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))

Proof of Theorem hlmod1i
StepHypRef Expression
1 hlmod.b . . 3 𝐵 = (Base‘𝐾)
2 hlmod.l . . 3 = (le‘𝐾)
3 hllat 37419 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
433ad2ant1 1133 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝐾 ∈ Lat)
5 simp21 1206 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑋𝐵)
6 simp22 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑌𝐵)
7 hlmod.j . . . . . 6 = (join‘𝐾)
81, 7latjcl 18202 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
94, 5, 6, 8syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 𝑌) ∈ 𝐵)
10 simp23 1208 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑍𝐵)
11 hlmod.m . . . . 5 = (meet‘𝐾)
121, 11latmcl 18203 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
134, 9, 10, 12syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
141, 11latmcl 18203 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
154, 6, 10, 14syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑌 𝑍) ∈ 𝐵)
161, 7latjcl 18202 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
174, 5, 15, 16syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
18 simp1 1136 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝐾 ∈ HL)
19 eqid 2736 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
20 hlmod.f . . . . . . . . 9 𝐹 = (pmap‘𝐾)
211, 19, 20pmapssat 37815 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
2218, 5, 21syl2anc 585 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
231, 19, 20pmapssat 37815 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
2418, 6, 23syl2anc 585 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
25 eqid 2736 . . . . . . . . 9 (PSubSp‘𝐾) = (PSubSp‘𝐾)
261, 25, 20pmapsub 37824 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑍𝐵) → (𝐹𝑍) ∈ (PSubSp‘𝐾))
274, 10, 26syl2anc 585 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑍) ∈ (PSubSp‘𝐾))
28 simp3l 1201 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑋 𝑍)
291, 2, 20pmaple 37817 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍 ↔ (𝐹𝑋) ⊆ (𝐹𝑍)))
3018, 5, 10, 29syl3anc 1371 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 𝑍 ↔ (𝐹𝑋) ⊆ (𝐹𝑍)))
3128, 30mpbid 231 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑋) ⊆ (𝐹𝑍))
32 hlmod.p . . . . . . . . 9 + = (+𝑃𝐾)
3319, 25, 32pmod1i 37904 . . . . . . . 8 ((𝐾 ∈ HL ∧ ((𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑍) ∈ (PSubSp‘𝐾))) → ((𝐹𝑋) ⊆ (𝐹𝑍) → (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍)))))
34333impia 1117 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑍) ∈ (PSubSp‘𝐾)) ∧ (𝐹𝑋) ⊆ (𝐹𝑍)) → (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍))))
3518, 22, 24, 27, 31, 34syl131anc 1383 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍))))
361, 11, 19, 20pmapmeet 37829 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
3718, 9, 10, 36syl3anc 1371 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
38 simp3r 1202 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))
3938ineq1d 4151 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
4037, 39eqtrd 2776 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
411, 11, 19, 20pmapmeet 37829 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵𝑍𝐵) → (𝐹‘(𝑌 𝑍)) = ((𝐹𝑌) ∩ (𝐹𝑍)))
4218, 6, 10, 41syl3anc 1371 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘(𝑌 𝑍)) = ((𝐹𝑌) ∩ (𝐹𝑍)))
4342oveq2d 7323 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍))))
4435, 40, 433eqtr4d 2786 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))))
451, 7, 20, 32pmapjoin 37908 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))) ⊆ (𝐹‘(𝑋 (𝑌 𝑍))))
464, 5, 15, 45syl3anc 1371 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))) ⊆ (𝐹‘(𝑋 (𝑌 𝑍))))
4744, 46eqsstrd 3964 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) ⊆ (𝐹‘(𝑋 (𝑌 𝑍))))
481, 2, 20pmaple 37817 . . . . 5 ((𝐾 ∈ HL ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵) → (((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)) ↔ (𝐹‘((𝑋 𝑌) 𝑍)) ⊆ (𝐹‘(𝑋 (𝑌 𝑍)))))
4918, 13, 17, 48syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)) ↔ (𝐹‘((𝑋 𝑌) 𝑍)) ⊆ (𝐹‘(𝑋 (𝑌 𝑍)))))
5047, 49mpbird 257 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)))
511, 2, 7, 11mod1ile 18256 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍 → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍)))
52513impia 1117 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑍) → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍))
534, 5, 6, 10, 28, 52syl131anc 1383 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍))
541, 2, 4, 13, 17, 50, 53latasymd 18208 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
55543expia 1121 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌))) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  cin 3891  wss 3892   class class class wbr 5081  cfv 6458  (class class class)co 7307  Basecbs 16957  lecple 17014  joincjn 18074  meetcmee 18075  Latclat 18194  Atomscatm 37319  HLchlt 37406  PSubSpcpsubsp 37552  pmapcpmap 37553  +𝑃cpadd 37851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-proset 18058  df-poset 18076  df-plt 18093  df-lub 18109  df-glb 18110  df-join 18111  df-meet 18112  df-p0 18188  df-lat 18195  df-clat 18262  df-oposet 37232  df-ol 37234  df-oml 37235  df-covers 37322  df-ats 37323  df-atl 37354  df-cvlat 37378  df-hlat 37407  df-psubsp 37559  df-pmap 37560  df-padd 37852
This theorem is referenced by:  atmod1i1  37913  atmod1i2  37915  llnmod1i2  37916
  Copyright terms: Public domain W3C validator