Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlmod1i Structured version   Visualization version   GIF version

Theorem hlmod1i 39835
Description: A version of the modular law pmod1i 39827 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.)
Hypotheses
Ref Expression
hlmod.b 𝐵 = (Base‘𝐾)
hlmod.l = (le‘𝐾)
hlmod.j = (join‘𝐾)
hlmod.m = (meet‘𝐾)
hlmod.f 𝐹 = (pmap‘𝐾)
hlmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
hlmod1i ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌))) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))

Proof of Theorem hlmod1i
StepHypRef Expression
1 hlmod.b . . 3 𝐵 = (Base‘𝐾)
2 hlmod.l . . 3 = (le‘𝐾)
3 hllat 39341 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
433ad2ant1 1133 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝐾 ∈ Lat)
5 simp21 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑋𝐵)
6 simp22 1208 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑌𝐵)
7 hlmod.j . . . . . 6 = (join‘𝐾)
81, 7latjcl 18363 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
94, 5, 6, 8syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 𝑌) ∈ 𝐵)
10 simp23 1209 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑍𝐵)
11 hlmod.m . . . . 5 = (meet‘𝐾)
121, 11latmcl 18364 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
134, 9, 10, 12syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
141, 11latmcl 18364 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
154, 6, 10, 14syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑌 𝑍) ∈ 𝐵)
161, 7latjcl 18363 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
174, 5, 15, 16syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
18 simp1 1136 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝐾 ∈ HL)
19 eqid 2729 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
20 hlmod.f . . . . . . . . 9 𝐹 = (pmap‘𝐾)
211, 19, 20pmapssat 39738 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
2218, 5, 21syl2anc 584 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
231, 19, 20pmapssat 39738 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
2418, 6, 23syl2anc 584 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
25 eqid 2729 . . . . . . . . 9 (PSubSp‘𝐾) = (PSubSp‘𝐾)
261, 25, 20pmapsub 39747 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑍𝐵) → (𝐹𝑍) ∈ (PSubSp‘𝐾))
274, 10, 26syl2anc 584 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑍) ∈ (PSubSp‘𝐾))
28 simp3l 1202 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑋 𝑍)
291, 2, 20pmaple 39740 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍 ↔ (𝐹𝑋) ⊆ (𝐹𝑍)))
3018, 5, 10, 29syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 𝑍 ↔ (𝐹𝑋) ⊆ (𝐹𝑍)))
3128, 30mpbid 232 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑋) ⊆ (𝐹𝑍))
32 hlmod.p . . . . . . . . 9 + = (+𝑃𝐾)
3319, 25, 32pmod1i 39827 . . . . . . . 8 ((𝐾 ∈ HL ∧ ((𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑍) ∈ (PSubSp‘𝐾))) → ((𝐹𝑋) ⊆ (𝐹𝑍) → (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍)))))
34333impia 1117 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑍) ∈ (PSubSp‘𝐾)) ∧ (𝐹𝑋) ⊆ (𝐹𝑍)) → (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍))))
3518, 22, 24, 27, 31, 34syl131anc 1385 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍))))
361, 11, 19, 20pmapmeet 39752 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
3718, 9, 10, 36syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
38 simp3r 1203 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))
3938ineq1d 4172 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
4037, 39eqtrd 2764 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
411, 11, 19, 20pmapmeet 39752 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵𝑍𝐵) → (𝐹‘(𝑌 𝑍)) = ((𝐹𝑌) ∩ (𝐹𝑍)))
4218, 6, 10, 41syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘(𝑌 𝑍)) = ((𝐹𝑌) ∩ (𝐹𝑍)))
4342oveq2d 7369 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍))))
4435, 40, 433eqtr4d 2774 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))))
451, 7, 20, 32pmapjoin 39831 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))) ⊆ (𝐹‘(𝑋 (𝑌 𝑍))))
464, 5, 15, 45syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))) ⊆ (𝐹‘(𝑋 (𝑌 𝑍))))
4744, 46eqsstrd 3972 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) ⊆ (𝐹‘(𝑋 (𝑌 𝑍))))
481, 2, 20pmaple 39740 . . . . 5 ((𝐾 ∈ HL ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵) → (((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)) ↔ (𝐹‘((𝑋 𝑌) 𝑍)) ⊆ (𝐹‘(𝑋 (𝑌 𝑍)))))
4918, 13, 17, 48syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)) ↔ (𝐹‘((𝑋 𝑌) 𝑍)) ⊆ (𝐹‘(𝑋 (𝑌 𝑍)))))
5047, 49mpbird 257 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)))
511, 2, 7, 11mod1ile 18417 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍 → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍)))
52513impia 1117 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑍) → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍))
534, 5, 6, 10, 28, 52syl131anc 1385 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍))
541, 2, 4, 13, 17, 50, 53latasymd 18369 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
55543expia 1121 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌))) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3904  wss 3905   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  meetcmee 18236  Latclat 18355  Atomscatm 39241  HLchlt 39328  PSubSpcpsubsp 39475  pmapcpmap 39476  +𝑃cpadd 39774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-clat 18423  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-psubsp 39482  df-pmap 39483  df-padd 39775
This theorem is referenced by:  atmod1i1  39836  atmod1i2  39838  llnmod1i2  39839
  Copyright terms: Public domain W3C validator