Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlmod1i Structured version   Visualization version   GIF version

Theorem hlmod1i 39975
Description: A version of the modular law pmod1i 39967 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.)
Hypotheses
Ref Expression
hlmod.b 𝐵 = (Base‘𝐾)
hlmod.l = (le‘𝐾)
hlmod.j = (join‘𝐾)
hlmod.m = (meet‘𝐾)
hlmod.f 𝐹 = (pmap‘𝐾)
hlmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
hlmod1i ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌))) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))

Proof of Theorem hlmod1i
StepHypRef Expression
1 hlmod.b . . 3 𝐵 = (Base‘𝐾)
2 hlmod.l . . 3 = (le‘𝐾)
3 hllat 39482 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
433ad2ant1 1133 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝐾 ∈ Lat)
5 simp21 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑋𝐵)
6 simp22 1208 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑌𝐵)
7 hlmod.j . . . . . 6 = (join‘𝐾)
81, 7latjcl 18347 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
94, 5, 6, 8syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 𝑌) ∈ 𝐵)
10 simp23 1209 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑍𝐵)
11 hlmod.m . . . . 5 = (meet‘𝐾)
121, 11latmcl 18348 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
134, 9, 10, 12syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
141, 11latmcl 18348 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
154, 6, 10, 14syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑌 𝑍) ∈ 𝐵)
161, 7latjcl 18347 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
174, 5, 15, 16syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
18 simp1 1136 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝐾 ∈ HL)
19 eqid 2733 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
20 hlmod.f . . . . . . . . 9 𝐹 = (pmap‘𝐾)
211, 19, 20pmapssat 39878 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
2218, 5, 21syl2anc 584 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
231, 19, 20pmapssat 39878 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
2418, 6, 23syl2anc 584 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
25 eqid 2733 . . . . . . . . 9 (PSubSp‘𝐾) = (PSubSp‘𝐾)
261, 25, 20pmapsub 39887 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑍𝐵) → (𝐹𝑍) ∈ (PSubSp‘𝐾))
274, 10, 26syl2anc 584 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑍) ∈ (PSubSp‘𝐾))
28 simp3l 1202 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → 𝑋 𝑍)
291, 2, 20pmaple 39880 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍 ↔ (𝐹𝑋) ⊆ (𝐹𝑍)))
3018, 5, 10, 29syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 𝑍 ↔ (𝐹𝑋) ⊆ (𝐹𝑍)))
3128, 30mpbid 232 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹𝑋) ⊆ (𝐹𝑍))
32 hlmod.p . . . . . . . . 9 + = (+𝑃𝐾)
3319, 25, 32pmod1i 39967 . . . . . . . 8 ((𝐾 ∈ HL ∧ ((𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑍) ∈ (PSubSp‘𝐾))) → ((𝐹𝑋) ⊆ (𝐹𝑍) → (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍)))))
34333impia 1117 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑍) ∈ (PSubSp‘𝐾)) ∧ (𝐹𝑋) ⊆ (𝐹𝑍)) → (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍))))
3518, 22, 24, 27, 31, 34syl131anc 1385 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍))))
361, 11, 19, 20pmapmeet 39892 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
3718, 9, 10, 36syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
38 simp3r 1203 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))
3938ineq1d 4168 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
4037, 39eqtrd 2768 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
411, 11, 19, 20pmapmeet 39892 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐵𝑍𝐵) → (𝐹‘(𝑌 𝑍)) = ((𝐹𝑌) ∩ (𝐹𝑍)))
4218, 6, 10, 41syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘(𝑌 𝑍)) = ((𝐹𝑌) ∩ (𝐹𝑍)))
4342oveq2d 7368 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))) = ((𝐹𝑋) + ((𝐹𝑌) ∩ (𝐹𝑍))))
4435, 40, 433eqtr4d 2778 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))))
451, 7, 20, 32pmapjoin 39971 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))) ⊆ (𝐹‘(𝑋 (𝑌 𝑍))))
464, 5, 15, 45syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝐹𝑋) + (𝐹‘(𝑌 𝑍))) ⊆ (𝐹‘(𝑋 (𝑌 𝑍))))
4744, 46eqsstrd 3965 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝐹‘((𝑋 𝑌) 𝑍)) ⊆ (𝐹‘(𝑋 (𝑌 𝑍))))
481, 2, 20pmaple 39880 . . . . 5 ((𝐾 ∈ HL ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵) → (((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)) ↔ (𝐹‘((𝑋 𝑌) 𝑍)) ⊆ (𝐹‘(𝑋 (𝑌 𝑍)))))
4918, 13, 17, 48syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)) ↔ (𝐹‘((𝑋 𝑌) 𝑍)) ⊆ (𝐹‘(𝑋 (𝑌 𝑍)))))
5047, 49mpbird 257 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)))
511, 2, 7, 11mod1ile 18401 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍 → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍)))
52513impia 1117 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑍) → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍))
534, 5, 6, 10, 28, 52syl131anc 1385 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → (𝑋 (𝑌 𝑍)) ((𝑋 𝑌) 𝑍))
541, 2, 4, 13, 17, 50, 53latasymd 18353 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
55543expia 1121 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍 ∧ (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌))) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  cin 3897  wss 3898   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  joincjn 18219  meetcmee 18220  Latclat 18339  Atomscatm 39382  HLchlt 39469  PSubSpcpsubsp 39615  pmapcpmap 39616  +𝑃cpadd 39914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-lat 18340  df-clat 18407  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-psubsp 39622  df-pmap 39623  df-padd 39915
This theorem is referenced by:  atmod1i1  39976  atmod1i2  39978  llnmod1i2  39979
  Copyright terms: Public domain W3C validator