Proof of Theorem hlmod1i
Step | Hyp | Ref
| Expression |
1 | | hlmod.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | hlmod.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
3 | | hllat 37419 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
4 | 3 | 3ad2ant1 1133 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → 𝐾 ∈ Lat) |
5 | | simp21 1206 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → 𝑋 ∈ 𝐵) |
6 | | simp22 1207 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → 𝑌 ∈ 𝐵) |
7 | | hlmod.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
8 | 1, 7 | latjcl 18202 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
9 | 4, 5, 6, 8 | syl3anc 1371 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
10 | | simp23 1208 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → 𝑍 ∈ 𝐵) |
11 | | hlmod.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
12 | 1, 11 | latmcl 18203 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∧ 𝑍) ∈ 𝐵) |
13 | 4, 9, 10, 12 | syl3anc 1371 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → ((𝑋 ∨ 𝑌) ∧ 𝑍) ∈ 𝐵) |
14 | 1, 11 | latmcl 18203 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∧ 𝑍) ∈ 𝐵) |
15 | 4, 6, 10, 14 | syl3anc 1371 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝑌 ∧ 𝑍) ∈ 𝐵) |
16 | 1, 7 | latjcl 18202 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑌 ∧ 𝑍) ∈ 𝐵) → (𝑋 ∨ (𝑌 ∧ 𝑍)) ∈ 𝐵) |
17 | 4, 5, 15, 16 | syl3anc 1371 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝑋 ∨ (𝑌 ∧ 𝑍)) ∈ 𝐵) |
18 | | simp1 1136 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → 𝐾 ∈ HL) |
19 | | eqid 2736 |
. . . . . . . . 9
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
20 | | hlmod.f |
. . . . . . . . 9
⊢ 𝐹 = (pmap‘𝐾) |
21 | 1, 19, 20 | pmapssat 37815 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ⊆ (Atoms‘𝐾)) |
22 | 18, 5, 21 | syl2anc 585 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘𝑋) ⊆ (Atoms‘𝐾)) |
23 | 1, 19, 20 | pmapssat 37815 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ⊆ (Atoms‘𝐾)) |
24 | 18, 6, 23 | syl2anc 585 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘𝑌) ⊆ (Atoms‘𝐾)) |
25 | | eqid 2736 |
. . . . . . . . 9
⊢
(PSubSp‘𝐾) =
(PSubSp‘𝐾) |
26 | 1, 25, 20 | pmapsub 37824 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐵) → (𝐹‘𝑍) ∈ (PSubSp‘𝐾)) |
27 | 4, 10, 26 | syl2anc 585 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘𝑍) ∈ (PSubSp‘𝐾)) |
28 | | simp3l 1201 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → 𝑋 ≤ 𝑍) |
29 | 1, 2, 20 | pmaple 37817 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ≤ 𝑍 ↔ (𝐹‘𝑋) ⊆ (𝐹‘𝑍))) |
30 | 18, 5, 10, 29 | syl3anc 1371 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝑋 ≤ 𝑍 ↔ (𝐹‘𝑋) ⊆ (𝐹‘𝑍))) |
31 | 28, 30 | mpbid 231 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘𝑋) ⊆ (𝐹‘𝑍)) |
32 | | hlmod.p |
. . . . . . . . 9
⊢ + =
(+𝑃‘𝐾) |
33 | 19, 25, 32 | pmod1i 37904 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ ((𝐹‘𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹‘𝑌) ⊆ (Atoms‘𝐾) ∧ (𝐹‘𝑍) ∈ (PSubSp‘𝐾))) → ((𝐹‘𝑋) ⊆ (𝐹‘𝑍) → (((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) = ((𝐹‘𝑋) + ((𝐹‘𝑌) ∩ (𝐹‘𝑍))))) |
34 | 33 | 3impia 1117 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ ((𝐹‘𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹‘𝑌) ⊆ (Atoms‘𝐾) ∧ (𝐹‘𝑍) ∈ (PSubSp‘𝐾)) ∧ (𝐹‘𝑋) ⊆ (𝐹‘𝑍)) → (((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) = ((𝐹‘𝑋) + ((𝐹‘𝑌) ∩ (𝐹‘𝑍)))) |
35 | 18, 22, 24, 27, 31, 34 | syl131anc 1383 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) = ((𝐹‘𝑋) + ((𝐹‘𝑌) ∩ (𝐹‘𝑍)))) |
36 | 1, 11, 19, 20 | pmapmeet 37829 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) = ((𝐹‘(𝑋 ∨ 𝑌)) ∩ (𝐹‘𝑍))) |
37 | 18, 9, 10, 36 | syl3anc 1371 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) = ((𝐹‘(𝑋 ∨ 𝑌)) ∩ (𝐹‘𝑍))) |
38 | | simp3r 1202 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌))) |
39 | 38 | ineq1d 4151 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → ((𝐹‘(𝑋 ∨ 𝑌)) ∩ (𝐹‘𝑍)) = (((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍))) |
40 | 37, 39 | eqtrd 2776 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) = (((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍))) |
41 | 1, 11, 19, 20 | pmapmeet 37829 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐹‘(𝑌 ∧ 𝑍)) = ((𝐹‘𝑌) ∩ (𝐹‘𝑍))) |
42 | 18, 6, 10, 41 | syl3anc 1371 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘(𝑌 ∧ 𝑍)) = ((𝐹‘𝑌) ∩ (𝐹‘𝑍))) |
43 | 42 | oveq2d 7323 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → ((𝐹‘𝑋) + (𝐹‘(𝑌 ∧ 𝑍))) = ((𝐹‘𝑋) + ((𝐹‘𝑌) ∩ (𝐹‘𝑍)))) |
44 | 35, 40, 43 | 3eqtr4d 2786 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) = ((𝐹‘𝑋) + (𝐹‘(𝑌 ∧ 𝑍)))) |
45 | 1, 7, 20, 32 | pmapjoin 37908 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑌 ∧ 𝑍) ∈ 𝐵) → ((𝐹‘𝑋) + (𝐹‘(𝑌 ∧ 𝑍))) ⊆ (𝐹‘(𝑋 ∨ (𝑌 ∧ 𝑍)))) |
46 | 4, 5, 15, 45 | syl3anc 1371 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → ((𝐹‘𝑋) + (𝐹‘(𝑌 ∧ 𝑍))) ⊆ (𝐹‘(𝑋 ∨ (𝑌 ∧ 𝑍)))) |
47 | 44, 46 | eqsstrd 3964 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) ⊆ (𝐹‘(𝑋 ∨ (𝑌 ∧ 𝑍)))) |
48 | 1, 2, 20 | pmaple 37817 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ ((𝑋 ∨ 𝑌) ∧ 𝑍) ∈ 𝐵 ∧ (𝑋 ∨ (𝑌 ∧ 𝑍)) ∈ 𝐵) → (((𝑋 ∨ 𝑌) ∧ 𝑍) ≤ (𝑋 ∨ (𝑌 ∧ 𝑍)) ↔ (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) ⊆ (𝐹‘(𝑋 ∨ (𝑌 ∧ 𝑍))))) |
49 | 18, 13, 17, 48 | syl3anc 1371 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (((𝑋 ∨ 𝑌) ∧ 𝑍) ≤ (𝑋 ∨ (𝑌 ∧ 𝑍)) ↔ (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) ⊆ (𝐹‘(𝑋 ∨ (𝑌 ∧ 𝑍))))) |
50 | 47, 49 | mpbird 257 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → ((𝑋 ∨ 𝑌) ∧ 𝑍) ≤ (𝑋 ∨ (𝑌 ∧ 𝑍))) |
51 | 1, 2, 7, 11 | mod1ile 18256 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑍 → (𝑋 ∨ (𝑌 ∧ 𝑍)) ≤ ((𝑋 ∨ 𝑌) ∧ 𝑍))) |
52 | 51 | 3impia 1117 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑍) → (𝑋 ∨ (𝑌 ∧ 𝑍)) ≤ ((𝑋 ∨ 𝑌) ∧ 𝑍)) |
53 | 4, 5, 6, 10, 28, 52 | syl131anc 1383 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝑋 ∨ (𝑌 ∧ 𝑍)) ≤ ((𝑋 ∨ 𝑌) ∧ 𝑍)) |
54 | 1, 2, 4, 13, 17, 50, 53 | latasymd 18208 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → ((𝑋 ∨ 𝑌) ∧ 𝑍) = (𝑋 ∨ (𝑌 ∧ 𝑍))) |
55 | 54 | 3expia 1121 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌))) → ((𝑋 ∨ 𝑌) ∧ 𝑍) = (𝑋 ∨ (𝑌 ∧ 𝑍)))) |