Proof of Theorem hlmod1i
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | hlmod.b | . . 3
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | hlmod.l | . . 3
⊢  ≤ =
(le‘𝐾) | 
| 3 |  | hllat 39365 | . . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | 
| 4 | 3 | 3ad2ant1 1133 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → 𝐾 ∈ Lat) | 
| 5 |  | simp21 1206 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → 𝑋 ∈ 𝐵) | 
| 6 |  | simp22 1207 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → 𝑌 ∈ 𝐵) | 
| 7 |  | hlmod.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 8 | 1, 7 | latjcl 18485 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) | 
| 9 | 4, 5, 6, 8 | syl3anc 1372 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝑋 ∨ 𝑌) ∈ 𝐵) | 
| 10 |  | simp23 1208 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → 𝑍 ∈ 𝐵) | 
| 11 |  | hlmod.m | . . . . 5
⊢  ∧ =
(meet‘𝐾) | 
| 12 | 1, 11 | latmcl 18486 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∧ 𝑍) ∈ 𝐵) | 
| 13 | 4, 9, 10, 12 | syl3anc 1372 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → ((𝑋 ∨ 𝑌) ∧ 𝑍) ∈ 𝐵) | 
| 14 | 1, 11 | latmcl 18486 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∧ 𝑍) ∈ 𝐵) | 
| 15 | 4, 6, 10, 14 | syl3anc 1372 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝑌 ∧ 𝑍) ∈ 𝐵) | 
| 16 | 1, 7 | latjcl 18485 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑌 ∧ 𝑍) ∈ 𝐵) → (𝑋 ∨ (𝑌 ∧ 𝑍)) ∈ 𝐵) | 
| 17 | 4, 5, 15, 16 | syl3anc 1372 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝑋 ∨ (𝑌 ∧ 𝑍)) ∈ 𝐵) | 
| 18 |  | simp1 1136 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → 𝐾 ∈ HL) | 
| 19 |  | eqid 2736 | . . . . . . . . 9
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) | 
| 20 |  | hlmod.f | . . . . . . . . 9
⊢ 𝐹 = (pmap‘𝐾) | 
| 21 | 1, 19, 20 | pmapssat 39762 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ⊆ (Atoms‘𝐾)) | 
| 22 | 18, 5, 21 | syl2anc 584 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘𝑋) ⊆ (Atoms‘𝐾)) | 
| 23 | 1, 19, 20 | pmapssat 39762 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ⊆ (Atoms‘𝐾)) | 
| 24 | 18, 6, 23 | syl2anc 584 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘𝑌) ⊆ (Atoms‘𝐾)) | 
| 25 |  | eqid 2736 | . . . . . . . . 9
⊢
(PSubSp‘𝐾) =
(PSubSp‘𝐾) | 
| 26 | 1, 25, 20 | pmapsub 39771 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐵) → (𝐹‘𝑍) ∈ (PSubSp‘𝐾)) | 
| 27 | 4, 10, 26 | syl2anc 584 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘𝑍) ∈ (PSubSp‘𝐾)) | 
| 28 |  | simp3l 1201 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → 𝑋 ≤ 𝑍) | 
| 29 | 1, 2, 20 | pmaple 39764 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ≤ 𝑍 ↔ (𝐹‘𝑋) ⊆ (𝐹‘𝑍))) | 
| 30 | 18, 5, 10, 29 | syl3anc 1372 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝑋 ≤ 𝑍 ↔ (𝐹‘𝑋) ⊆ (𝐹‘𝑍))) | 
| 31 | 28, 30 | mpbid 232 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘𝑋) ⊆ (𝐹‘𝑍)) | 
| 32 |  | hlmod.p | . . . . . . . . 9
⊢  + =
(+𝑃‘𝐾) | 
| 33 | 19, 25, 32 | pmod1i 39851 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ ((𝐹‘𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹‘𝑌) ⊆ (Atoms‘𝐾) ∧ (𝐹‘𝑍) ∈ (PSubSp‘𝐾))) → ((𝐹‘𝑋) ⊆ (𝐹‘𝑍) → (((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) = ((𝐹‘𝑋) + ((𝐹‘𝑌) ∩ (𝐹‘𝑍))))) | 
| 34 | 33 | 3impia 1117 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ ((𝐹‘𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹‘𝑌) ⊆ (Atoms‘𝐾) ∧ (𝐹‘𝑍) ∈ (PSubSp‘𝐾)) ∧ (𝐹‘𝑋) ⊆ (𝐹‘𝑍)) → (((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) = ((𝐹‘𝑋) + ((𝐹‘𝑌) ∩ (𝐹‘𝑍)))) | 
| 35 | 18, 22, 24, 27, 31, 34 | syl131anc 1384 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍)) = ((𝐹‘𝑋) + ((𝐹‘𝑌) ∩ (𝐹‘𝑍)))) | 
| 36 | 1, 11, 19, 20 | pmapmeet 39776 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) = ((𝐹‘(𝑋 ∨ 𝑌)) ∩ (𝐹‘𝑍))) | 
| 37 | 18, 9, 10, 36 | syl3anc 1372 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) = ((𝐹‘(𝑋 ∨ 𝑌)) ∩ (𝐹‘𝑍))) | 
| 38 |  | simp3r 1202 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌))) | 
| 39 | 38 | ineq1d 4218 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → ((𝐹‘(𝑋 ∨ 𝑌)) ∩ (𝐹‘𝑍)) = (((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍))) | 
| 40 | 37, 39 | eqtrd 2776 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) = (((𝐹‘𝑋) + (𝐹‘𝑌)) ∩ (𝐹‘𝑍))) | 
| 41 | 1, 11, 19, 20 | pmapmeet 39776 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐹‘(𝑌 ∧ 𝑍)) = ((𝐹‘𝑌) ∩ (𝐹‘𝑍))) | 
| 42 | 18, 6, 10, 41 | syl3anc 1372 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘(𝑌 ∧ 𝑍)) = ((𝐹‘𝑌) ∩ (𝐹‘𝑍))) | 
| 43 | 42 | oveq2d 7448 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → ((𝐹‘𝑋) + (𝐹‘(𝑌 ∧ 𝑍))) = ((𝐹‘𝑋) + ((𝐹‘𝑌) ∩ (𝐹‘𝑍)))) | 
| 44 | 35, 40, 43 | 3eqtr4d 2786 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) = ((𝐹‘𝑋) + (𝐹‘(𝑌 ∧ 𝑍)))) | 
| 45 | 1, 7, 20, 32 | pmapjoin 39855 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑌 ∧ 𝑍) ∈ 𝐵) → ((𝐹‘𝑋) + (𝐹‘(𝑌 ∧ 𝑍))) ⊆ (𝐹‘(𝑋 ∨ (𝑌 ∧ 𝑍)))) | 
| 46 | 4, 5, 15, 45 | syl3anc 1372 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → ((𝐹‘𝑋) + (𝐹‘(𝑌 ∧ 𝑍))) ⊆ (𝐹‘(𝑋 ∨ (𝑌 ∧ 𝑍)))) | 
| 47 | 44, 46 | eqsstrd 4017 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) ⊆ (𝐹‘(𝑋 ∨ (𝑌 ∧ 𝑍)))) | 
| 48 | 1, 2, 20 | pmaple 39764 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ ((𝑋 ∨ 𝑌) ∧ 𝑍) ∈ 𝐵 ∧ (𝑋 ∨ (𝑌 ∧ 𝑍)) ∈ 𝐵) → (((𝑋 ∨ 𝑌) ∧ 𝑍) ≤ (𝑋 ∨ (𝑌 ∧ 𝑍)) ↔ (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) ⊆ (𝐹‘(𝑋 ∨ (𝑌 ∧ 𝑍))))) | 
| 49 | 18, 13, 17, 48 | syl3anc 1372 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (((𝑋 ∨ 𝑌) ∧ 𝑍) ≤ (𝑋 ∨ (𝑌 ∧ 𝑍)) ↔ (𝐹‘((𝑋 ∨ 𝑌) ∧ 𝑍)) ⊆ (𝐹‘(𝑋 ∨ (𝑌 ∧ 𝑍))))) | 
| 50 | 47, 49 | mpbird 257 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → ((𝑋 ∨ 𝑌) ∧ 𝑍) ≤ (𝑋 ∨ (𝑌 ∧ 𝑍))) | 
| 51 | 1, 2, 7, 11 | mod1ile 18539 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑍 → (𝑋 ∨ (𝑌 ∧ 𝑍)) ≤ ((𝑋 ∨ 𝑌) ∧ 𝑍))) | 
| 52 | 51 | 3impia 1117 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑍) → (𝑋 ∨ (𝑌 ∧ 𝑍)) ≤ ((𝑋 ∨ 𝑌) ∧ 𝑍)) | 
| 53 | 4, 5, 6, 10, 28, 52 | syl131anc 1384 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → (𝑋 ∨ (𝑌 ∧ 𝑍)) ≤ ((𝑋 ∨ 𝑌) ∧ 𝑍)) | 
| 54 | 1, 2, 4, 13, 17, 50, 53 | latasymd 18491 | . 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌)))) → ((𝑋 ∨ 𝑌) ∧ 𝑍) = (𝑋 ∨ (𝑌 ∧ 𝑍))) | 
| 55 | 54 | 3expia 1121 | 1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌))) → ((𝑋 ∨ 𝑌) ∧ 𝑍) = (𝑋 ∨ (𝑌 ∧ 𝑍)))) |