Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautj Structured version   Visualization version   GIF version

Theorem lautj 37221
Description: Meet property of a lattice automorphism. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
lautj.b 𝐵 = (Base‘𝐾)
lautj.j = (join‘𝐾)
lautj.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautj ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem lautj
StepHypRef Expression
1 lautj.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2819 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 485 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐾 ∈ Lat)
4 simpr1 1188 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹𝐼)
53, 4jca 514 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐾 ∈ Lat ∧ 𝐹𝐼))
6 lautj.j . . . . 5 = (join‘𝐾)
71, 6latjcl 17653 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
873adant3r1 1176 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 𝑌) ∈ 𝐵)
9 lautj.i . . . 4 𝐼 = (LAut‘𝐾)
101, 9lautcl 37215 . . 3 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑋 𝑌) ∈ 𝐵) → (𝐹‘(𝑋 𝑌)) ∈ 𝐵)
115, 8, 10syl2anc 586 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) ∈ 𝐵)
12 simpr2 1189 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
131, 9lautcl 37215 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
145, 12, 13syl2anc 586 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝐵)
15 simpr3 1190 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
161, 9lautcl 37215 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ 𝑌𝐵) → (𝐹𝑌) ∈ 𝐵)
175, 15, 16syl2anc 586 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝐵)
181, 6latjcl 17653 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵)
193, 14, 17, 18syl3anc 1365 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵)
201, 9laut1o 37213 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)
21203ad2antr1 1182 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹:𝐵1-1-onto𝐵)
22 f1ocnvfv1 7025 . . . . 5 ((𝐹:𝐵1-1-onto𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝐹‘(𝐹‘(𝑋 𝑌))) = (𝑋 𝑌))
2321, 8, 22syl2anc 586 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹‘(𝑋 𝑌))) = (𝑋 𝑌))
241, 2, 6latlej1 17662 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → (𝐹𝑋)(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
253, 14, 17, 24syl3anc 1365 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋)(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
26 f1ocnvfv2 7026 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐵 ∧ ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵) → (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))) = ((𝐹𝑋) (𝐹𝑌)))
2721, 19, 26syl2anc 586 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))) = ((𝐹𝑋) (𝐹𝑌)))
2825, 27breqtrrd 5085 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
29 f1ocnvdm 7033 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐵 ∧ ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵) → (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)
3021, 19, 29syl2anc 586 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)
311, 2, 9lautle 37212 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑋𝐵 ∧ (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)) → (𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ↔ (𝐹𝑋)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))))
325, 12, 30, 31syl12anc 834 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ↔ (𝐹𝑋)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))))
3328, 32mpbird 259 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))))
341, 2, 6latlej2 17663 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → (𝐹𝑌)(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
353, 14, 17, 34syl3anc 1365 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌)(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
3635, 27breqtrrd 5085 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
371, 2, 9lautle 37212 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑌𝐵 ∧ (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)) → (𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ↔ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))))
385, 15, 30, 37syl12anc 834 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ↔ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))))
3936, 38mpbird 259 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))))
401, 2, 6latjle12 17664 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵 ∧ (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)) → ((𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ∧ 𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))) ↔ (𝑋 𝑌)(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
413, 12, 15, 30, 40syl13anc 1366 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ∧ 𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))) ↔ (𝑋 𝑌)(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
4233, 39, 41mpbi2and 710 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 𝑌)(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))))
4323, 42eqbrtrd 5079 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹‘(𝑋 𝑌)))(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))))
441, 2, 9lautcnvle 37217 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ ((𝐹‘(𝑋 𝑌)) ∈ 𝐵 ∧ ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵)) → ((𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌)) ↔ (𝐹‘(𝐹‘(𝑋 𝑌)))(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
455, 11, 19, 44syl12anc 834 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌)) ↔ (𝐹‘(𝐹‘(𝑋 𝑌)))(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
4643, 45mpbird 259 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
471, 2, 6latlej1 17662 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
48473adant3r1 1176 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋(le‘𝐾)(𝑋 𝑌))
491, 2, 9lautle 37212 . . . . 5 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → (𝑋(le‘𝐾)(𝑋 𝑌) ↔ (𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌))))
505, 12, 8, 49syl12anc 834 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋(le‘𝐾)(𝑋 𝑌) ↔ (𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌))))
5148, 50mpbid 234 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌)))
521, 2, 6latlej2 17663 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
53523adant3r1 1176 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌(le‘𝐾)(𝑋 𝑌))
541, 2, 9lautle 37212 . . . . 5 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → (𝑌(le‘𝐾)(𝑋 𝑌) ↔ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌))))
555, 15, 8, 54syl12anc 834 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑌(le‘𝐾)(𝑋 𝑌) ↔ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌))))
5653, 55mpbid 234 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌)))
571, 2, 6latjle12 17664 . . . 4 ((𝐾 ∈ Lat ∧ ((𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵 ∧ (𝐹‘(𝑋 𝑌)) ∈ 𝐵)) → (((𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌)) ∧ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌))) ↔ ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹‘(𝑋 𝑌))))
583, 14, 17, 11, 57syl13anc 1366 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (((𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌)) ∧ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌))) ↔ ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹‘(𝑋 𝑌))))
5951, 56, 58mpbi2and 710 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹‘(𝑋 𝑌)))
601, 2, 3, 11, 19, 46, 59latasymd 17659 1 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5057  ccnv 5547  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  Basecbs 16475  lecple 16564  joincjn 17546  Latclat 17647  LAutclaut 37113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-map 8400  df-proset 17530  df-poset 17548  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-lat 17648  df-laut 37117
This theorem is referenced by:  ltrnj  37260
  Copyright terms: Public domain W3C validator