Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautj Structured version   Visualization version   GIF version

Theorem lautj 40076
Description: Meet property of a lattice automorphism. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
lautj.b 𝐵 = (Base‘𝐾)
lautj.j = (join‘𝐾)
lautj.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautj ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem lautj
StepHypRef Expression
1 lautj.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2735 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 482 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐾 ∈ Lat)
4 simpr1 1193 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹𝐼)
53, 4jca 511 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐾 ∈ Lat ∧ 𝐹𝐼))
6 lautj.j . . . . 5 = (join‘𝐾)
71, 6latjcl 18497 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
873adant3r1 1181 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 𝑌) ∈ 𝐵)
9 lautj.i . . . 4 𝐼 = (LAut‘𝐾)
101, 9lautcl 40070 . . 3 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑋 𝑌) ∈ 𝐵) → (𝐹‘(𝑋 𝑌)) ∈ 𝐵)
115, 8, 10syl2anc 584 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) ∈ 𝐵)
12 simpr2 1194 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
131, 9lautcl 40070 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
145, 12, 13syl2anc 584 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝐵)
15 simpr3 1195 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
161, 9lautcl 40070 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ 𝑌𝐵) → (𝐹𝑌) ∈ 𝐵)
175, 15, 16syl2anc 584 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝐵)
181, 6latjcl 18497 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵)
193, 14, 17, 18syl3anc 1370 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵)
201, 9laut1o 40068 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)
21203ad2antr1 1187 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹:𝐵1-1-onto𝐵)
22 f1ocnvfv1 7296 . . . . 5 ((𝐹:𝐵1-1-onto𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝐹‘(𝐹‘(𝑋 𝑌))) = (𝑋 𝑌))
2321, 8, 22syl2anc 584 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹‘(𝑋 𝑌))) = (𝑋 𝑌))
241, 2, 6latlej1 18506 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → (𝐹𝑋)(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
253, 14, 17, 24syl3anc 1370 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋)(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
26 f1ocnvfv2 7297 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐵 ∧ ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵) → (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))) = ((𝐹𝑋) (𝐹𝑌)))
2721, 19, 26syl2anc 584 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))) = ((𝐹𝑋) (𝐹𝑌)))
2825, 27breqtrrd 5176 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
29 f1ocnvdm 7305 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐵 ∧ ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵) → (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)
3021, 19, 29syl2anc 584 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)
311, 2, 9lautle 40067 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑋𝐵 ∧ (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)) → (𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ↔ (𝐹𝑋)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))))
325, 12, 30, 31syl12anc 837 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ↔ (𝐹𝑋)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))))
3328, 32mpbird 257 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))))
341, 2, 6latlej2 18507 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → (𝐹𝑌)(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
353, 14, 17, 34syl3anc 1370 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌)(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
3635, 27breqtrrd 5176 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
371, 2, 9lautle 40067 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑌𝐵 ∧ (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)) → (𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ↔ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))))
385, 15, 30, 37syl12anc 837 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ↔ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝐹‘((𝐹𝑋) (𝐹𝑌))))))
3936, 38mpbird 257 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))))
401, 2, 6latjle12 18508 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵 ∧ (𝐹‘((𝐹𝑋) (𝐹𝑌))) ∈ 𝐵)) → ((𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ∧ 𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))) ↔ (𝑋 𝑌)(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
413, 12, 15, 30, 40syl13anc 1371 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝑋(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))) ∧ 𝑌(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))) ↔ (𝑋 𝑌)(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
4233, 39, 41mpbi2and 712 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 𝑌)(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))))
4323, 42eqbrtrd 5170 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹‘(𝑋 𝑌)))(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌))))
441, 2, 9lautcnvle 40072 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ ((𝐹‘(𝑋 𝑌)) ∈ 𝐵 ∧ ((𝐹𝑋) (𝐹𝑌)) ∈ 𝐵)) → ((𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌)) ↔ (𝐹‘(𝐹‘(𝑋 𝑌)))(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
455, 11, 19, 44syl12anc 837 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌)) ↔ (𝐹‘(𝐹‘(𝑋 𝑌)))(le‘𝐾)(𝐹‘((𝐹𝑋) (𝐹𝑌)))))
4643, 45mpbird 257 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌))(le‘𝐾)((𝐹𝑋) (𝐹𝑌)))
471, 2, 6latlej1 18506 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
48473adant3r1 1181 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋(le‘𝐾)(𝑋 𝑌))
491, 2, 9lautle 40067 . . . . 5 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → (𝑋(le‘𝐾)(𝑋 𝑌) ↔ (𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌))))
505, 12, 8, 49syl12anc 837 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋(le‘𝐾)(𝑋 𝑌) ↔ (𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌))))
5148, 50mpbid 232 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌)))
521, 2, 6latlej2 18507 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
53523adant3r1 1181 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌(le‘𝐾)(𝑋 𝑌))
541, 2, 9lautle 40067 . . . . 5 (((𝐾 ∈ Lat ∧ 𝐹𝐼) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → (𝑌(le‘𝐾)(𝑋 𝑌) ↔ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌))))
555, 15, 8, 54syl12anc 837 . . . 4 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑌(le‘𝐾)(𝑋 𝑌) ↔ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌))))
5653, 55mpbid 232 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌)))
571, 2, 6latjle12 18508 . . . 4 ((𝐾 ∈ Lat ∧ ((𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵 ∧ (𝐹‘(𝑋 𝑌)) ∈ 𝐵)) → (((𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌)) ∧ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌))) ↔ ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹‘(𝑋 𝑌))))
583, 14, 17, 11, 57syl13anc 1371 . . 3 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (((𝐹𝑋)(le‘𝐾)(𝐹‘(𝑋 𝑌)) ∧ (𝐹𝑌)(le‘𝐾)(𝐹‘(𝑋 𝑌))) ↔ ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹‘(𝑋 𝑌))))
5951, 56, 58mpbi2and 712 . 2 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌))(le‘𝐾)(𝐹‘(𝑋 𝑌)))
601, 2, 3, 11, 19, 46, 59latasymd 18503 1 ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  ccnv 5688  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  Latclat 18489  LAutclaut 39968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-proset 18352  df-poset 18371  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-lat 18490  df-laut 39972
This theorem is referenced by:  ltrnj  40115
  Copyright terms: Public domain W3C validator