| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lattrd | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is transitive. Deduction version of lattr 18452. (Contributed by NM, 3-Sep-2012.) |
| Ref | Expression |
|---|---|
| lattrd.b | ⊢ 𝐵 = (Base‘𝐾) |
| lattrd.l | ⊢ ≤ = (le‘𝐾) |
| lattrd.1 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
| lattrd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lattrd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| lattrd.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| lattrd.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| lattrd.6 | ⊢ (𝜑 → 𝑌 ≤ 𝑍) |
| Ref | Expression |
|---|---|
| lattrd | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lattrd.5 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 2 | lattrd.6 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑍) | |
| 3 | lattrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
| 4 | lattrd.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | lattrd.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | lattrd.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 7 | lattrd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | lattrd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 9 | 7, 8 | lattr 18452 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 10 | 3, 4, 5, 6, 9 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 11 | 1, 2, 10 | mp2and 699 | 1 ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6530 Basecbs 17226 lecple 17276 Latclat 18439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-dm 5664 df-iota 6483 df-fv 6538 df-poset 18323 df-lat 18440 |
| This theorem is referenced by: latmlej11 18486 latjass 18491 lubun 18523 cvlcvr1 39303 exatleN 39369 2atjm 39410 2llnmat 39489 llnmlplnN 39504 2llnjaN 39531 2lplnja 39584 dalem5 39632 lncmp 39748 2lnat 39749 2llnma1b 39751 cdlema1N 39756 paddasslem5 39789 paddasslem12 39796 paddasslem13 39797 dalawlem3 39838 dalawlem5 39840 dalawlem6 39841 dalawlem7 39842 dalawlem8 39843 dalawlem11 39846 dalawlem12 39847 pl42lem1N 39944 lhpexle2lem 39974 lhpexle3lem 39976 4atexlemtlw 40032 4atexlemc 40034 cdleme15 40243 cdleme17b 40252 cdleme22e 40309 cdleme22eALTN 40310 cdleme23a 40314 cdleme28a 40335 cdleme30a 40343 cdleme32e 40410 cdleme35b 40415 trlord 40534 cdlemg10 40606 cdlemg11b 40607 cdlemg17a 40626 cdlemg35 40678 tendococl 40737 tendopltp 40745 cdlemi1 40783 cdlemk11 40814 cdlemk5u 40826 cdlemk11u 40836 cdlemk52 40919 dialss 41011 diaglbN 41020 diaintclN 41023 dia2dimlem1 41029 cdlemm10N 41083 djajN 41102 dibglbN 41131 dibintclN 41132 diblss 41135 cdlemn10 41171 dihord1 41183 dihord2pre2 41191 dihopelvalcpre 41213 dihord5apre 41227 dihmeetlem1N 41255 dihglblem2N 41259 dihmeetlem2N 41264 dihglbcpreN 41265 dihmeetlem3N 41270 |
| Copyright terms: Public domain | W3C validator |