| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lattrd | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is transitive. Deduction version of lattr 18368. (Contributed by NM, 3-Sep-2012.) |
| Ref | Expression |
|---|---|
| lattrd.b | ⊢ 𝐵 = (Base‘𝐾) |
| lattrd.l | ⊢ ≤ = (le‘𝐾) |
| lattrd.1 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
| lattrd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lattrd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| lattrd.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| lattrd.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| lattrd.6 | ⊢ (𝜑 → 𝑌 ≤ 𝑍) |
| Ref | Expression |
|---|---|
| lattrd | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lattrd.5 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 2 | lattrd.6 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑍) | |
| 3 | lattrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
| 4 | lattrd.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | lattrd.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | lattrd.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 7 | lattrd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | lattrd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 9 | 7, 8 | lattr 18368 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 10 | 3, 4, 5, 6, 9 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 11 | 1, 2, 10 | mp2and 699 | 1 ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 Basecbs 17138 lecple 17186 Latclat 18355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-dm 5633 df-iota 6442 df-fv 6494 df-poset 18237 df-lat 18356 |
| This theorem is referenced by: latmlej11 18402 latjass 18407 lubun 18439 cvlcvr1 39317 exatleN 39383 2atjm 39424 2llnmat 39503 llnmlplnN 39518 2llnjaN 39545 2lplnja 39598 dalem5 39646 lncmp 39762 2lnat 39763 2llnma1b 39765 cdlema1N 39770 paddasslem5 39803 paddasslem12 39810 paddasslem13 39811 dalawlem3 39852 dalawlem5 39854 dalawlem6 39855 dalawlem7 39856 dalawlem8 39857 dalawlem11 39860 dalawlem12 39861 pl42lem1N 39958 lhpexle2lem 39988 lhpexle3lem 39990 4atexlemtlw 40046 4atexlemc 40048 cdleme15 40257 cdleme17b 40266 cdleme22e 40323 cdleme22eALTN 40324 cdleme23a 40328 cdleme28a 40349 cdleme30a 40357 cdleme32e 40424 cdleme35b 40429 trlord 40548 cdlemg10 40620 cdlemg11b 40621 cdlemg17a 40640 cdlemg35 40692 tendococl 40751 tendopltp 40759 cdlemi1 40797 cdlemk11 40828 cdlemk5u 40840 cdlemk11u 40850 cdlemk52 40933 dialss 41025 diaglbN 41034 diaintclN 41037 dia2dimlem1 41043 cdlemm10N 41097 djajN 41116 dibglbN 41145 dibintclN 41146 diblss 41149 cdlemn10 41185 dihord1 41197 dihord2pre2 41205 dihopelvalcpre 41227 dihord5apre 41241 dihmeetlem1N 41269 dihglblem2N 41273 dihmeetlem2N 41278 dihglbcpreN 41279 dihmeetlem3N 41284 |
| Copyright terms: Public domain | W3C validator |