| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lattrd | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is transitive. Deduction version of lattr 18352. (Contributed by NM, 3-Sep-2012.) |
| Ref | Expression |
|---|---|
| lattrd.b | ⊢ 𝐵 = (Base‘𝐾) |
| lattrd.l | ⊢ ≤ = (le‘𝐾) |
| lattrd.1 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
| lattrd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lattrd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| lattrd.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| lattrd.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| lattrd.6 | ⊢ (𝜑 → 𝑌 ≤ 𝑍) |
| Ref | Expression |
|---|---|
| lattrd | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lattrd.5 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 2 | lattrd.6 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑍) | |
| 3 | lattrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
| 4 | lattrd.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | lattrd.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | lattrd.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 7 | lattrd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | lattrd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 9 | 7, 8 | lattr 18352 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 10 | 3, 4, 5, 6, 9 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 11 | 1, 2, 10 | mp2and 699 | 1 ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 Basecbs 17122 lecple 17170 Latclat 18339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-dm 5629 df-iota 6442 df-fv 6494 df-poset 18221 df-lat 18340 |
| This theorem is referenced by: latmlej11 18386 latjass 18391 lubun 18423 cvlcvr1 39458 exatleN 39523 2atjm 39564 2llnmat 39643 llnmlplnN 39658 2llnjaN 39685 2lplnja 39738 dalem5 39786 lncmp 39902 2lnat 39903 2llnma1b 39905 cdlema1N 39910 paddasslem5 39943 paddasslem12 39950 paddasslem13 39951 dalawlem3 39992 dalawlem5 39994 dalawlem6 39995 dalawlem7 39996 dalawlem8 39997 dalawlem11 40000 dalawlem12 40001 pl42lem1N 40098 lhpexle2lem 40128 lhpexle3lem 40130 4atexlemtlw 40186 4atexlemc 40188 cdleme15 40397 cdleme17b 40406 cdleme22e 40463 cdleme22eALTN 40464 cdleme23a 40468 cdleme28a 40489 cdleme30a 40497 cdleme32e 40564 cdleme35b 40569 trlord 40688 cdlemg10 40760 cdlemg11b 40761 cdlemg17a 40780 cdlemg35 40832 tendococl 40891 tendopltp 40899 cdlemi1 40937 cdlemk11 40968 cdlemk5u 40980 cdlemk11u 40990 cdlemk52 41073 dialss 41165 diaglbN 41174 diaintclN 41177 dia2dimlem1 41183 cdlemm10N 41237 djajN 41256 dibglbN 41285 dibintclN 41286 diblss 41289 cdlemn10 41325 dihord1 41337 dihord2pre2 41345 dihopelvalcpre 41367 dihord5apre 41381 dihmeetlem1N 41409 dihglblem2N 41413 dihmeetlem2N 41418 dihglbcpreN 41419 dihmeetlem3N 41424 |
| Copyright terms: Public domain | W3C validator |