Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lattrd | Structured version Visualization version GIF version |
Description: A lattice ordering is transitive. Deduction version of lattr 18171. (Contributed by NM, 3-Sep-2012.) |
Ref | Expression |
---|---|
lattrd.b | ⊢ 𝐵 = (Base‘𝐾) |
lattrd.l | ⊢ ≤ = (le‘𝐾) |
lattrd.1 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
lattrd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lattrd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lattrd.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
lattrd.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
lattrd.6 | ⊢ (𝜑 → 𝑌 ≤ 𝑍) |
Ref | Expression |
---|---|
lattrd | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lattrd.5 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
2 | lattrd.6 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑍) | |
3 | lattrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
4 | lattrd.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | lattrd.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | lattrd.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | lattrd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | lattrd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
9 | 7, 8 | lattr 18171 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
10 | 3, 4, 5, 6, 9 | syl13anc 1371 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
11 | 1, 2, 10 | mp2and 696 | 1 ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 class class class wbr 5075 ‘cfv 6437 Basecbs 16921 lecple 16978 Latclat 18158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-nul 5231 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-xp 5596 df-dm 5600 df-iota 6395 df-fv 6445 df-poset 18040 df-lat 18159 |
This theorem is referenced by: latmlej11 18205 latjass 18210 lubun 18242 cvlcvr1 37360 exatleN 37425 2atjm 37466 2llnmat 37545 llnmlplnN 37560 2llnjaN 37587 2lplnja 37640 dalem5 37688 lncmp 37804 2lnat 37805 2llnma1b 37807 cdlema1N 37812 paddasslem5 37845 paddasslem12 37852 paddasslem13 37853 dalawlem3 37894 dalawlem5 37896 dalawlem6 37897 dalawlem7 37898 dalawlem8 37899 dalawlem11 37902 dalawlem12 37903 pl42lem1N 38000 lhpexle2lem 38030 lhpexle3lem 38032 4atexlemtlw 38088 4atexlemc 38090 cdleme15 38299 cdleme17b 38308 cdleme22e 38365 cdleme22eALTN 38366 cdleme23a 38370 cdleme28a 38391 cdleme30a 38399 cdleme32e 38466 cdleme35b 38471 trlord 38590 cdlemg10 38662 cdlemg11b 38663 cdlemg17a 38682 cdlemg35 38734 tendococl 38793 tendopltp 38801 cdlemi1 38839 cdlemk11 38870 cdlemk5u 38882 cdlemk11u 38892 cdlemk52 38975 dialss 39067 diaglbN 39076 diaintclN 39079 dia2dimlem1 39085 cdlemm10N 39139 djajN 39158 dibglbN 39187 dibintclN 39188 diblss 39191 cdlemn10 39227 dihord1 39239 dihord2pre2 39247 dihopelvalcpre 39269 dihord5apre 39283 dihmeetlem1N 39311 dihglblem2N 39315 dihmeetlem2N 39320 dihglbcpreN 39321 dihmeetlem3N 39326 |
Copyright terms: Public domain | W3C validator |