| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lattrd | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is transitive. Deduction version of lattr 18403. (Contributed by NM, 3-Sep-2012.) |
| Ref | Expression |
|---|---|
| lattrd.b | ⊢ 𝐵 = (Base‘𝐾) |
| lattrd.l | ⊢ ≤ = (le‘𝐾) |
| lattrd.1 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
| lattrd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lattrd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| lattrd.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| lattrd.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| lattrd.6 | ⊢ (𝜑 → 𝑌 ≤ 𝑍) |
| Ref | Expression |
|---|---|
| lattrd | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lattrd.5 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 2 | lattrd.6 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑍) | |
| 3 | lattrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
| 4 | lattrd.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | lattrd.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | lattrd.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 7 | lattrd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | lattrd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 9 | 7, 8 | lattr 18403 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 10 | 3, 4, 5, 6, 9 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 11 | 1, 2, 10 | mp2and 699 | 1 ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 Latclat 18390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-iota 6464 df-fv 6519 df-poset 18274 df-lat 18391 |
| This theorem is referenced by: latmlej11 18437 latjass 18442 lubun 18474 cvlcvr1 39332 exatleN 39398 2atjm 39439 2llnmat 39518 llnmlplnN 39533 2llnjaN 39560 2lplnja 39613 dalem5 39661 lncmp 39777 2lnat 39778 2llnma1b 39780 cdlema1N 39785 paddasslem5 39818 paddasslem12 39825 paddasslem13 39826 dalawlem3 39867 dalawlem5 39869 dalawlem6 39870 dalawlem7 39871 dalawlem8 39872 dalawlem11 39875 dalawlem12 39876 pl42lem1N 39973 lhpexle2lem 40003 lhpexle3lem 40005 4atexlemtlw 40061 4atexlemc 40063 cdleme15 40272 cdleme17b 40281 cdleme22e 40338 cdleme22eALTN 40339 cdleme23a 40343 cdleme28a 40364 cdleme30a 40372 cdleme32e 40439 cdleme35b 40444 trlord 40563 cdlemg10 40635 cdlemg11b 40636 cdlemg17a 40655 cdlemg35 40707 tendococl 40766 tendopltp 40774 cdlemi1 40812 cdlemk11 40843 cdlemk5u 40855 cdlemk11u 40865 cdlemk52 40948 dialss 41040 diaglbN 41049 diaintclN 41052 dia2dimlem1 41058 cdlemm10N 41112 djajN 41131 dibglbN 41160 dibintclN 41161 diblss 41164 cdlemn10 41200 dihord1 41212 dihord2pre2 41220 dihopelvalcpre 41242 dihord5apre 41256 dihmeetlem1N 41284 dihglblem2N 41288 dihmeetlem2N 41293 dihglbcpreN 41294 dihmeetlem3N 41299 |
| Copyright terms: Public domain | W3C validator |