Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lattrd | Structured version Visualization version GIF version |
Description: A lattice ordering is transitive. Deduction version of lattr 18077. (Contributed by NM, 3-Sep-2012.) |
Ref | Expression |
---|---|
lattrd.b | ⊢ 𝐵 = (Base‘𝐾) |
lattrd.l | ⊢ ≤ = (le‘𝐾) |
lattrd.1 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
lattrd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lattrd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lattrd.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
lattrd.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
lattrd.6 | ⊢ (𝜑 → 𝑌 ≤ 𝑍) |
Ref | Expression |
---|---|
lattrd | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lattrd.5 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
2 | lattrd.6 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑍) | |
3 | lattrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
4 | lattrd.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | lattrd.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | lattrd.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | lattrd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | lattrd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
9 | 7, 8 | lattr 18077 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
10 | 3, 4, 5, 6, 9 | syl13anc 1370 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
11 | 1, 2, 10 | mp2and 695 | 1 ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 Latclat 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-iota 6376 df-fv 6426 df-poset 17946 df-lat 18065 |
This theorem is referenced by: latmlej11 18111 latjass 18116 lubun 18148 cvlcvr1 37280 exatleN 37345 2atjm 37386 2llnmat 37465 llnmlplnN 37480 2llnjaN 37507 2lplnja 37560 dalem5 37608 lncmp 37724 2lnat 37725 2llnma1b 37727 cdlema1N 37732 paddasslem5 37765 paddasslem12 37772 paddasslem13 37773 dalawlem3 37814 dalawlem5 37816 dalawlem6 37817 dalawlem7 37818 dalawlem8 37819 dalawlem11 37822 dalawlem12 37823 pl42lem1N 37920 lhpexle2lem 37950 lhpexle3lem 37952 4atexlemtlw 38008 4atexlemc 38010 cdleme15 38219 cdleme17b 38228 cdleme22e 38285 cdleme22eALTN 38286 cdleme23a 38290 cdleme28a 38311 cdleme30a 38319 cdleme32e 38386 cdleme35b 38391 trlord 38510 cdlemg10 38582 cdlemg11b 38583 cdlemg17a 38602 cdlemg35 38654 tendococl 38713 tendopltp 38721 cdlemi1 38759 cdlemk11 38790 cdlemk5u 38802 cdlemk11u 38812 cdlemk52 38895 dialss 38987 diaglbN 38996 diaintclN 38999 dia2dimlem1 39005 cdlemm10N 39059 djajN 39078 dibglbN 39107 dibintclN 39108 diblss 39111 cdlemn10 39147 dihord1 39159 dihord2pre2 39167 dihopelvalcpre 39189 dihord5apre 39203 dihmeetlem1N 39231 dihglblem2N 39235 dihmeetlem2N 39240 dihglbcpreN 39241 dihmeetlem3N 39246 |
Copyright terms: Public domain | W3C validator |