![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lattrd | Structured version Visualization version GIF version |
Description: A lattice ordering is transitive. Deduction version of lattr 18502. (Contributed by NM, 3-Sep-2012.) |
Ref | Expression |
---|---|
lattrd.b | ⊢ 𝐵 = (Base‘𝐾) |
lattrd.l | ⊢ ≤ = (le‘𝐾) |
lattrd.1 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
lattrd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lattrd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lattrd.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
lattrd.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
lattrd.6 | ⊢ (𝜑 → 𝑌 ≤ 𝑍) |
Ref | Expression |
---|---|
lattrd | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lattrd.5 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
2 | lattrd.6 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑍) | |
3 | lattrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
4 | lattrd.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | lattrd.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | lattrd.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | lattrd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | lattrd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
9 | 7, 8 | lattr 18502 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
10 | 3, 4, 5, 6, 9 | syl13anc 1371 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
11 | 1, 2, 10 | mp2and 699 | 1 ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 lecple 17305 Latclat 18489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-dm 5699 df-iota 6516 df-fv 6571 df-poset 18371 df-lat 18490 |
This theorem is referenced by: latmlej11 18536 latjass 18541 lubun 18573 cvlcvr1 39321 exatleN 39387 2atjm 39428 2llnmat 39507 llnmlplnN 39522 2llnjaN 39549 2lplnja 39602 dalem5 39650 lncmp 39766 2lnat 39767 2llnma1b 39769 cdlema1N 39774 paddasslem5 39807 paddasslem12 39814 paddasslem13 39815 dalawlem3 39856 dalawlem5 39858 dalawlem6 39859 dalawlem7 39860 dalawlem8 39861 dalawlem11 39864 dalawlem12 39865 pl42lem1N 39962 lhpexle2lem 39992 lhpexle3lem 39994 4atexlemtlw 40050 4atexlemc 40052 cdleme15 40261 cdleme17b 40270 cdleme22e 40327 cdleme22eALTN 40328 cdleme23a 40332 cdleme28a 40353 cdleme30a 40361 cdleme32e 40428 cdleme35b 40433 trlord 40552 cdlemg10 40624 cdlemg11b 40625 cdlemg17a 40644 cdlemg35 40696 tendococl 40755 tendopltp 40763 cdlemi1 40801 cdlemk11 40832 cdlemk5u 40844 cdlemk11u 40854 cdlemk52 40937 dialss 41029 diaglbN 41038 diaintclN 41041 dia2dimlem1 41047 cdlemm10N 41101 djajN 41120 dibglbN 41149 dibintclN 41150 diblss 41153 cdlemn10 41189 dihord1 41201 dihord2pre2 41209 dihopelvalcpre 41231 dihord5apre 41245 dihmeetlem1N 41273 dihglblem2N 41277 dihmeetlem2N 41282 dihglbcpreN 41283 dihmeetlem3N 41288 |
Copyright terms: Public domain | W3C validator |