![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lattrd | Structured version Visualization version GIF version |
Description: A lattice ordering is transitive. Deduction version of lattr 18514. (Contributed by NM, 3-Sep-2012.) |
Ref | Expression |
---|---|
lattrd.b | ⊢ 𝐵 = (Base‘𝐾) |
lattrd.l | ⊢ ≤ = (le‘𝐾) |
lattrd.1 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
lattrd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lattrd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lattrd.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
lattrd.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
lattrd.6 | ⊢ (𝜑 → 𝑌 ≤ 𝑍) |
Ref | Expression |
---|---|
lattrd | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lattrd.5 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
2 | lattrd.6 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑍) | |
3 | lattrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
4 | lattrd.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | lattrd.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | lattrd.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | lattrd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | lattrd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
9 | 7, 8 | lattr 18514 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
10 | 3, 4, 5, 6, 9 | syl13anc 1372 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
11 | 1, 2, 10 | mp2and 698 | 1 ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 Latclat 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-iota 6525 df-fv 6581 df-poset 18383 df-lat 18502 |
This theorem is referenced by: latmlej11 18548 latjass 18553 lubun 18585 cvlcvr1 39295 exatleN 39361 2atjm 39402 2llnmat 39481 llnmlplnN 39496 2llnjaN 39523 2lplnja 39576 dalem5 39624 lncmp 39740 2lnat 39741 2llnma1b 39743 cdlema1N 39748 paddasslem5 39781 paddasslem12 39788 paddasslem13 39789 dalawlem3 39830 dalawlem5 39832 dalawlem6 39833 dalawlem7 39834 dalawlem8 39835 dalawlem11 39838 dalawlem12 39839 pl42lem1N 39936 lhpexle2lem 39966 lhpexle3lem 39968 4atexlemtlw 40024 4atexlemc 40026 cdleme15 40235 cdleme17b 40244 cdleme22e 40301 cdleme22eALTN 40302 cdleme23a 40306 cdleme28a 40327 cdleme30a 40335 cdleme32e 40402 cdleme35b 40407 trlord 40526 cdlemg10 40598 cdlemg11b 40599 cdlemg17a 40618 cdlemg35 40670 tendococl 40729 tendopltp 40737 cdlemi1 40775 cdlemk11 40806 cdlemk5u 40818 cdlemk11u 40828 cdlemk52 40911 dialss 41003 diaglbN 41012 diaintclN 41015 dia2dimlem1 41021 cdlemm10N 41075 djajN 41094 dibglbN 41123 dibintclN 41124 diblss 41127 cdlemn10 41163 dihord1 41175 dihord2pre2 41183 dihopelvalcpre 41205 dihord5apre 41219 dihmeetlem1N 41247 dihglblem2N 41251 dihmeetlem2N 41256 dihglbcpreN 41257 dihmeetlem3N 41262 |
Copyright terms: Public domain | W3C validator |