![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lattrd | Structured version Visualization version GIF version |
Description: A lattice ordering is transitive. Deduction version of lattr 18397. (Contributed by NM, 3-Sep-2012.) |
Ref | Expression |
---|---|
lattrd.b | β’ π΅ = (BaseβπΎ) |
lattrd.l | β’ β€ = (leβπΎ) |
lattrd.1 | β’ (π β πΎ β Lat) |
lattrd.2 | β’ (π β π β π΅) |
lattrd.3 | β’ (π β π β π΅) |
lattrd.4 | β’ (π β π β π΅) |
lattrd.5 | β’ (π β π β€ π) |
lattrd.6 | β’ (π β π β€ π) |
Ref | Expression |
---|---|
lattrd | β’ (π β π β€ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lattrd.5 | . 2 β’ (π β π β€ π) | |
2 | lattrd.6 | . 2 β’ (π β π β€ π) | |
3 | lattrd.1 | . . 3 β’ (π β πΎ β Lat) | |
4 | lattrd.2 | . . 3 β’ (π β π β π΅) | |
5 | lattrd.3 | . . 3 β’ (π β π β π΅) | |
6 | lattrd.4 | . . 3 β’ (π β π β π΅) | |
7 | lattrd.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
8 | lattrd.l | . . . 4 β’ β€ = (leβπΎ) | |
9 | 7, 8 | lattr 18397 | . . 3 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β€ π β§ π β€ π) β π β€ π)) |
10 | 3, 4, 5, 6, 9 | syl13anc 1373 | . 2 β’ (π β ((π β€ π β§ π β€ π) β π β€ π)) |
11 | 1, 2, 10 | mp2and 698 | 1 β’ (π β π β€ π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 class class class wbr 5149 βcfv 6544 Basecbs 17144 lecple 17204 Latclat 18384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-dm 5687 df-iota 6496 df-fv 6552 df-poset 18266 df-lat 18385 |
This theorem is referenced by: latmlej11 18431 latjass 18436 lubun 18468 cvlcvr1 38257 exatleN 38323 2atjm 38364 2llnmat 38443 llnmlplnN 38458 2llnjaN 38485 2lplnja 38538 dalem5 38586 lncmp 38702 2lnat 38703 2llnma1b 38705 cdlema1N 38710 paddasslem5 38743 paddasslem12 38750 paddasslem13 38751 dalawlem3 38792 dalawlem5 38794 dalawlem6 38795 dalawlem7 38796 dalawlem8 38797 dalawlem11 38800 dalawlem12 38801 pl42lem1N 38898 lhpexle2lem 38928 lhpexle3lem 38930 4atexlemtlw 38986 4atexlemc 38988 cdleme15 39197 cdleme17b 39206 cdleme22e 39263 cdleme22eALTN 39264 cdleme23a 39268 cdleme28a 39289 cdleme30a 39297 cdleme32e 39364 cdleme35b 39369 trlord 39488 cdlemg10 39560 cdlemg11b 39561 cdlemg17a 39580 cdlemg35 39632 tendococl 39691 tendopltp 39699 cdlemi1 39737 cdlemk11 39768 cdlemk5u 39780 cdlemk11u 39790 cdlemk52 39873 dialss 39965 diaglbN 39974 diaintclN 39977 dia2dimlem1 39983 cdlemm10N 40037 djajN 40056 dibglbN 40085 dibintclN 40086 diblss 40089 cdlemn10 40125 dihord1 40137 dihord2pre2 40145 dihopelvalcpre 40167 dihord5apre 40181 dihmeetlem1N 40209 dihglblem2N 40213 dihmeetlem2N 40218 dihglbcpreN 40219 dihmeetlem3N 40224 |
Copyright terms: Public domain | W3C validator |