Step | Hyp | Ref
| Expression |
1 | | dochvalr.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | eqid 2738 |
. . . 4
⊢
((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) |
3 | | dochvalr.i |
. . . 4
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
4 | | eqid 2738 |
. . . 4
⊢
(Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) |
5 | 1, 2, 3, 4 | dihrnss 39219 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
6 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) |
7 | | eqid 2738 |
. . . 4
⊢
(glb‘𝐾) =
(glb‘𝐾) |
8 | | dochvalr.o |
. . . 4
⊢ ⊥ =
(oc‘𝐾) |
9 | | dochvalr.n |
. . . 4
⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) |
10 | 6, 7, 8, 1, 3, 2, 4, 9 | dochval 39292 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) → (𝑁‘𝑋) = (𝐼‘( ⊥
‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
11 | 5, 10 | syldan 590 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝑁‘𝑋) = (𝐼‘( ⊥
‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
12 | | eqid 2738 |
. . . . 5
⊢
(le‘𝐾) =
(le‘𝐾) |
13 | | hllat 37304 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
14 | 13 | ad2antrr 722 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝐾 ∈ Lat) |
15 | | hlclat 37299 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
16 | 15 | ad2antrr 722 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝐾 ∈ CLat) |
17 | | ssrab2 4009 |
. . . . . 6
⊢ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} ⊆ (Base‘𝐾) |
18 | 6, 7 | clatglbcl 18138 |
. . . . . 6
⊢ ((𝐾 ∈ CLat ∧ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}) ∈ (Base‘𝐾)) |
19 | 16, 17, 18 | sylancl 585 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}) ∈ (Base‘𝐾)) |
20 | 6, 1, 3 | dihcnvcl 39212 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ (Base‘𝐾)) |
21 | 17 | a1i 11 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} ⊆ (Base‘𝐾)) |
22 | | ssid 3939 |
. . . . . . . 8
⊢ 𝑋 ⊆ 𝑋 |
23 | 1, 3 | dihcnvid2 39214 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) |
24 | 22, 23 | sseqtrrid 3970 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ⊆ (𝐼‘(◡𝐼‘𝑋))) |
25 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑦 = (◡𝐼‘𝑋) → (𝐼‘𝑦) = (𝐼‘(◡𝐼‘𝑋))) |
26 | 25 | sseq2d 3949 |
. . . . . . . 8
⊢ (𝑦 = (◡𝐼‘𝑋) → (𝑋 ⊆ (𝐼‘𝑦) ↔ 𝑋 ⊆ (𝐼‘(◡𝐼‘𝑋)))) |
27 | 26 | elrab 3617 |
. . . . . . 7
⊢ ((◡𝐼‘𝑋) ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} ↔ ((◡𝐼‘𝑋) ∈ (Base‘𝐾) ∧ 𝑋 ⊆ (𝐼‘(◡𝐼‘𝑋)))) |
28 | 20, 24, 27 | sylanbrc 582 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}) |
29 | 6, 12, 7 | clatglble 18150 |
. . . . . 6
⊢ ((𝐾 ∈ CLat ∧ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} ⊆ (Base‘𝐾) ∧ (◡𝐼‘𝑋) ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}) → ((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})(le‘𝐾)(◡𝐼‘𝑋)) |
30 | 16, 21, 28, 29 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})(le‘𝐾)(◡𝐼‘𝑋)) |
31 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝐼‘𝑦) = (𝐼‘𝑧)) |
32 | 31 | sseq2d 3949 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑋 ⊆ (𝐼‘𝑦) ↔ 𝑋 ⊆ (𝐼‘𝑧))) |
33 | 32 | elrab 3617 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} ↔ (𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ⊆ (𝐼‘𝑧))) |
34 | 23 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) |
35 | 34 | sseq1d 3948 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝐼‘(◡𝐼‘𝑋)) ⊆ (𝐼‘𝑧) ↔ 𝑋 ⊆ (𝐼‘𝑧))) |
36 | | simpll 763 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
37 | 20 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) ∧ 𝑧 ∈ (Base‘𝐾)) → (◡𝐼‘𝑋) ∈ (Base‘𝐾)) |
38 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑧 ∈ (Base‘𝐾)) |
39 | 6, 12, 1, 3 | dihord 39205 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (◡𝐼‘𝑋) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝐼‘(◡𝐼‘𝑋)) ⊆ (𝐼‘𝑧) ↔ (◡𝐼‘𝑋)(le‘𝐾)𝑧)) |
40 | 36, 37, 38, 39 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝐼‘(◡𝐼‘𝑋)) ⊆ (𝐼‘𝑧) ↔ (◡𝐼‘𝑋)(le‘𝐾)𝑧)) |
41 | 35, 40 | bitr3d 280 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑋 ⊆ (𝐼‘𝑧) ↔ (◡𝐼‘𝑋)(le‘𝐾)𝑧)) |
42 | 41 | biimpd 228 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑋 ⊆ (𝐼‘𝑧) → (◡𝐼‘𝑋)(le‘𝐾)𝑧)) |
43 | 42 | expimpd 453 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ((𝑧 ∈ (Base‘𝐾) ∧ 𝑋 ⊆ (𝐼‘𝑧)) → (◡𝐼‘𝑋)(le‘𝐾)𝑧)) |
44 | 33, 43 | syl5bi 241 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝑧 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} → (◡𝐼‘𝑋)(le‘𝐾)𝑧)) |
45 | 44 | ralrimiv 3106 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ∀𝑧 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} (◡𝐼‘𝑋)(le‘𝐾)𝑧) |
46 | 6, 12, 7 | clatleglb 18151 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ (◡𝐼‘𝑋) ∈ (Base‘𝐾) ∧ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} ⊆ (Base‘𝐾)) → ((◡𝐼‘𝑋)(le‘𝐾)((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}) ↔ ∀𝑧 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} (◡𝐼‘𝑋)(le‘𝐾)𝑧)) |
47 | 16, 20, 21, 46 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ((◡𝐼‘𝑋)(le‘𝐾)((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}) ↔ ∀𝑧 ∈ {𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)} (◡𝐼‘𝑋)(le‘𝐾)𝑧)) |
48 | 45, 47 | mpbird 256 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋)(le‘𝐾)((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})) |
49 | 6, 12, 14, 19, 20, 30, 48 | latasymd 18078 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}) = (◡𝐼‘𝑋)) |
50 | 49 | fveq2d 6760 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥
‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)})) = ( ⊥ ‘(◡𝐼‘𝑋))) |
51 | 50 | fveq2d 6760 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘( ⊥
‘((glb‘𝐾)‘{𝑦 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (𝐼‘𝑦)}))) = (𝐼‘( ⊥ ‘(◡𝐼‘𝑋)))) |
52 | 11, 51 | eqtrd 2778 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(◡𝐼‘𝑋)))) |