Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnmlplnN Structured version   Visualization version   GIF version

Theorem llnmlplnN 39522
Description: The intersection of a line with a plane not containing it is an atom. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
llnmlpln.l = (le‘𝐾)
llnmlpln.m = (meet‘𝐾)
llnmlpln.z 0 = (0.‘𝐾)
llnmlpln.a 𝐴 = (Atoms‘𝐾)
llnmlpln.n 𝑁 = (LLines‘𝐾)
llnmlpln.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
llnmlplnN (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)

Proof of Theorem llnmlplnN
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simprl 771 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → ¬ 𝑋 𝑌)
2 simp11 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ HL)
32hllatd 39346 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ Lat)
4 simp12 1203 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑋𝑁)
5 eqid 2735 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
6 llnmlpln.n . . . . . . . . 9 𝑁 = (LLines‘𝐾)
75, 6llnbase 39492 . . . . . . . 8 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
84, 7syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑋 ∈ (Base‘𝐾))
9 simp13 1204 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑌𝑃)
10 llnmlpln.p . . . . . . . . 9 𝑃 = (LPlanes‘𝐾)
115, 10lplnbase 39517 . . . . . . . 8 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
129, 11syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑌 ∈ (Base‘𝐾))
13 llnmlpln.m . . . . . . . 8 = (meet‘𝐾)
145, 13latmcl 18498 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
153, 8, 12, 14syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ∈ (Base‘𝐾))
16 simp2r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ≠ 0 )
17 simp3 1137 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → ¬ (𝑋 𝑌) ∈ 𝐴)
18 llnmlpln.l . . . . . . 7 = (le‘𝐾)
19 llnmlpln.z . . . . . . 7 0 = (0.‘𝐾)
20 llnmlpln.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
215, 18, 19, 20, 6llnle 39501 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ ((𝑋 𝑌) ≠ 0 ∧ ¬ (𝑋 𝑌) ∈ 𝐴)) → ∃𝑢𝑁 𝑢 (𝑋 𝑌))
222, 15, 16, 17, 21syl22anc 839 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → ∃𝑢𝑁 𝑢 (𝑋 𝑌))
233adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝐾 ∈ Lat)
2415adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → (𝑋 𝑌) ∈ (Base‘𝐾))
258adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑋 ∈ (Base‘𝐾))
265, 18, 13latmle1 18522 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) 𝑋)
273, 8, 12, 26syl3anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) 𝑋)
2827adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → (𝑋 𝑌) 𝑋)
295, 6llnbase 39492 . . . . . . . . . 10 (𝑢𝑁𝑢 ∈ (Base‘𝐾))
3029ad2antrl 728 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢 ∈ (Base‘𝐾))
31 simprr 773 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢 (𝑋 𝑌))
325, 18, 23, 30, 24, 25, 31, 28lattrd 18504 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢 𝑋)
33 simpl11 1247 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝐾 ∈ HL)
34 simprl 771 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢𝑁)
35 simpl12 1248 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑋𝑁)
3618, 6llncmp 39505 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑢𝑁𝑋𝑁) → (𝑢 𝑋𝑢 = 𝑋))
3733, 34, 35, 36syl3anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → (𝑢 𝑋𝑢 = 𝑋))
3832, 37mpbid 232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢 = 𝑋)
3938, 31eqbrtrrd 5172 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑋 (𝑋 𝑌))
405, 18, 23, 24, 25, 28, 39latasymd 18503 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → (𝑋 𝑌) = 𝑋)
4122, 40rexlimddv 3159 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) = 𝑋)
425, 18, 13latleeqm1 18525 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))
433, 8, 12, 42syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))
4441, 43mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑋 𝑌)
45443expia 1120 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (¬ (𝑋 𝑌) ∈ 𝐴𝑋 𝑌))
461, 45mt3d 148 1 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  meetcmee 18370  0.cp0 18481  Latclat 18489  Atomscatm 39245  HLchlt 39332  LLinesclln 39474  LPlanesclpl 39475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator