Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnmlplnN Structured version   Visualization version   GIF version

Theorem llnmlplnN 39506
Description: The intersection of a line with a plane not containing it is an atom. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
llnmlpln.l = (le‘𝐾)
llnmlpln.m = (meet‘𝐾)
llnmlpln.z 0 = (0.‘𝐾)
llnmlpln.a 𝐴 = (Atoms‘𝐾)
llnmlpln.n 𝑁 = (LLines‘𝐾)
llnmlpln.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
llnmlplnN (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)

Proof of Theorem llnmlplnN
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simprl 770 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → ¬ 𝑋 𝑌)
2 simp11 1204 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ HL)
32hllatd 39330 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ Lat)
4 simp12 1205 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑋𝑁)
5 eqid 2729 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
6 llnmlpln.n . . . . . . . . 9 𝑁 = (LLines‘𝐾)
75, 6llnbase 39476 . . . . . . . 8 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
84, 7syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑋 ∈ (Base‘𝐾))
9 simp13 1206 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑌𝑃)
10 llnmlpln.p . . . . . . . . 9 𝑃 = (LPlanes‘𝐾)
115, 10lplnbase 39501 . . . . . . . 8 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
129, 11syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑌 ∈ (Base‘𝐾))
13 llnmlpln.m . . . . . . . 8 = (meet‘𝐾)
145, 13latmcl 18375 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
153, 8, 12, 14syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ∈ (Base‘𝐾))
16 simp2r 1201 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ≠ 0 )
17 simp3 1138 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → ¬ (𝑋 𝑌) ∈ 𝐴)
18 llnmlpln.l . . . . . . 7 = (le‘𝐾)
19 llnmlpln.z . . . . . . 7 0 = (0.‘𝐾)
20 llnmlpln.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
215, 18, 19, 20, 6llnle 39485 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ ((𝑋 𝑌) ≠ 0 ∧ ¬ (𝑋 𝑌) ∈ 𝐴)) → ∃𝑢𝑁 𝑢 (𝑋 𝑌))
222, 15, 16, 17, 21syl22anc 838 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → ∃𝑢𝑁 𝑢 (𝑋 𝑌))
233adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝐾 ∈ Lat)
2415adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → (𝑋 𝑌) ∈ (Base‘𝐾))
258adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑋 ∈ (Base‘𝐾))
265, 18, 13latmle1 18399 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) 𝑋)
273, 8, 12, 26syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) 𝑋)
2827adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → (𝑋 𝑌) 𝑋)
295, 6llnbase 39476 . . . . . . . . . 10 (𝑢𝑁𝑢 ∈ (Base‘𝐾))
3029ad2antrl 728 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢 ∈ (Base‘𝐾))
31 simprr 772 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢 (𝑋 𝑌))
325, 18, 23, 30, 24, 25, 31, 28lattrd 18381 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢 𝑋)
33 simpl11 1249 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝐾 ∈ HL)
34 simprl 770 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢𝑁)
35 simpl12 1250 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑋𝑁)
3618, 6llncmp 39489 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑢𝑁𝑋𝑁) → (𝑢 𝑋𝑢 = 𝑋))
3733, 34, 35, 36syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → (𝑢 𝑋𝑢 = 𝑋))
3832, 37mpbid 232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢 = 𝑋)
3938, 31eqbrtrrd 5126 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑋 (𝑋 𝑌))
405, 18, 23, 24, 25, 28, 39latasymd 18380 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → (𝑋 𝑌) = 𝑋)
4122, 40rexlimddv 3140 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) = 𝑋)
425, 18, 13latleeqm1 18402 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))
433, 8, 12, 42syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))
4441, 43mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑋 𝑌)
45443expia 1121 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (¬ (𝑋 𝑌) ∈ 𝐴𝑋 𝑌))
461, 45mt3d 148 1 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  meetcmee 18249  0.cp0 18358  Latclat 18366  Atomscatm 39229  HLchlt 39316  LLinesclln 39458  LPlanesclpl 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator