MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidd Structured version   Visualization version   GIF version

Theorem grpidd 18590
Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpidd.b (𝜑𝐵 = (Base‘𝐺))
grpidd.p (𝜑+ = (+g𝐺))
grpidd.z (𝜑0𝐵)
grpidd.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
grpidd.j ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
Assertion
Ref Expression
grpidd (𝜑0 = (0g𝐺))
Distinct variable groups:   𝑥,𝐺   𝜑,𝑥   𝑥, 0
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)

Proof of Theorem grpidd
StepHypRef Expression
1 eqid 2733 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2733 . 2 (0g𝐺) = (0g𝐺)
3 eqid 2733 . 2 (+g𝐺) = (+g𝐺)
4 grpidd.z . . 3 (𝜑0𝐵)
5 grpidd.b . . 3 (𝜑𝐵 = (Base‘𝐺))
64, 5eleqtrd 2836 . 2 (𝜑0 ∈ (Base‘𝐺))
75eleq2d 2820 . . . 4 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐺)))
87biimpar 479 . . 3 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑥𝐵)
9 grpidd.p . . . . . 6 (𝜑+ = (+g𝐺))
109adantr 482 . . . . 5 ((𝜑𝑥𝐵) → + = (+g𝐺))
1110oveqd 7426 . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = ( 0 (+g𝐺)𝑥))
12 grpidd.i . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
1311, 12eqtr3d 2775 . . 3 ((𝜑𝑥𝐵) → ( 0 (+g𝐺)𝑥) = 𝑥)
148, 13syldan 592 . 2 ((𝜑𝑥 ∈ (Base‘𝐺)) → ( 0 (+g𝐺)𝑥) = 𝑥)
1510oveqd 7426 . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = (𝑥(+g𝐺) 0 ))
16 grpidd.j . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
1715, 16eqtr3d 2775 . . 3 ((𝜑𝑥𝐵) → (𝑥(+g𝐺) 0 ) = 𝑥)
188, 17syldan 592 . 2 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺) 0 ) = 𝑥)
191, 2, 3, 6, 14, 18ismgmid2 18587 1 (𝜑0 = (0g𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cfv 6544  (class class class)co 7409  Basecbs 17144  +gcplusg 17197  0gc0g 17385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-riota 7365  df-ov 7412  df-0g 17387
This theorem is referenced by:  ress0g  18653  imasmnd2  18662  smndex1id  18792  isgrpde  18843  xrs0  32176
  Copyright terms: Public domain W3C validator