| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpidd | Structured version Visualization version GIF version | ||
| Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpidd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| grpidd.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
| grpidd.z | ⊢ (𝜑 → 0 ∈ 𝐵) |
| grpidd.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
| grpidd.j | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
| Ref | Expression |
|---|---|
| grpidd | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2736 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | eqid 2736 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | grpidd.z | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) | |
| 5 | grpidd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 6 | 4, 5 | eleqtrd 2837 | . 2 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
| 7 | 5 | eleq2d 2821 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐺))) |
| 8 | 7 | biimpar 477 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ 𝐵) |
| 9 | grpidd.p | . . . . . 6 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → + = (+g‘𝐺)) |
| 11 | 10 | oveqd 7427 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = ( 0 (+g‘𝐺)𝑥)) |
| 12 | grpidd.i | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | |
| 13 | 11, 12 | eqtr3d 2773 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
| 14 | 8, 13 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
| 15 | 10 | oveqd 7427 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = (𝑥(+g‘𝐺) 0 )) |
| 16 | grpidd.j | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) | |
| 17 | 15, 16 | eqtr3d 2773 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
| 18 | 8, 17 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
| 19 | 1, 2, 3, 6, 14, 18 | ismgmid2 18651 | 1 ⊢ (𝜑 → 0 = (0g‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 0gc0g 17458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-riota 7367 df-ov 7413 df-0g 17460 |
| This theorem is referenced by: ress0g 18745 imasmnd2 18757 smndex1id 18894 isgrpde 18945 xrs0 33003 |
| Copyright terms: Public domain | W3C validator |