![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpidd | Structured version Visualization version GIF version |
Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpidd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
grpidd.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
grpidd.z | ⊢ (𝜑 → 0 ∈ 𝐵) |
grpidd.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
grpidd.j | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
Ref | Expression |
---|---|
grpidd | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2825 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | eqid 2825 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | grpidd.z | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) | |
5 | grpidd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
6 | 4, 5 | eleqtrd 2908 | . 2 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
7 | 5 | eleq2d 2892 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐺))) |
8 | 7 | biimpar 471 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ 𝐵) |
9 | grpidd.p | . . . . . 6 ⊢ (𝜑 → + = (+g‘𝐺)) | |
10 | 9 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → + = (+g‘𝐺)) |
11 | 10 | oveqd 6927 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = ( 0 (+g‘𝐺)𝑥)) |
12 | grpidd.i | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | |
13 | 11, 12 | eqtr3d 2863 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
14 | 8, 13 | syldan 585 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
15 | 10 | oveqd 6927 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = (𝑥(+g‘𝐺) 0 )) |
16 | grpidd.j | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) | |
17 | 15, 16 | eqtr3d 2863 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
18 | 8, 17 | syldan 585 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
19 | 1, 2, 3, 6, 14, 18 | ismgmid2 17627 | 1 ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 +gcplusg 16312 0gc0g 16460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-iota 6090 df-fun 6129 df-fv 6135 df-riota 6871 df-ov 6913 df-0g 16462 |
This theorem is referenced by: ress0g 17679 imasmnd2 17687 isgrpde 17804 xrs0 30216 |
Copyright terms: Public domain | W3C validator |