MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidd Structured version   Visualization version   GIF version

Theorem grpidd 18684
Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpidd.b (𝜑𝐵 = (Base‘𝐺))
grpidd.p (𝜑+ = (+g𝐺))
grpidd.z (𝜑0𝐵)
grpidd.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
grpidd.j ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
Assertion
Ref Expression
grpidd (𝜑0 = (0g𝐺))
Distinct variable groups:   𝑥,𝐺   𝜑,𝑥   𝑥, 0
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)

Proof of Theorem grpidd
StepHypRef Expression
1 eqid 2737 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2737 . 2 (0g𝐺) = (0g𝐺)
3 eqid 2737 . 2 (+g𝐺) = (+g𝐺)
4 grpidd.z . . 3 (𝜑0𝐵)
5 grpidd.b . . 3 (𝜑𝐵 = (Base‘𝐺))
64, 5eleqtrd 2843 . 2 (𝜑0 ∈ (Base‘𝐺))
75eleq2d 2827 . . . 4 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐺)))
87biimpar 477 . . 3 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑥𝐵)
9 grpidd.p . . . . . 6 (𝜑+ = (+g𝐺))
109adantr 480 . . . . 5 ((𝜑𝑥𝐵) → + = (+g𝐺))
1110oveqd 7448 . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = ( 0 (+g𝐺)𝑥))
12 grpidd.i . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
1311, 12eqtr3d 2779 . . 3 ((𝜑𝑥𝐵) → ( 0 (+g𝐺)𝑥) = 𝑥)
148, 13syldan 591 . 2 ((𝜑𝑥 ∈ (Base‘𝐺)) → ( 0 (+g𝐺)𝑥) = 𝑥)
1510oveqd 7448 . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = (𝑥(+g𝐺) 0 ))
16 grpidd.j . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
1715, 16eqtr3d 2779 . . 3 ((𝜑𝑥𝐵) → (𝑥(+g𝐺) 0 ) = 𝑥)
188, 17syldan 591 . 2 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺) 0 ) = 𝑥)
191, 2, 3, 6, 14, 18ismgmid2 18681 1 (𝜑0 = (0g𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-riota 7388  df-ov 7434  df-0g 17486
This theorem is referenced by:  ress0g  18775  imasmnd2  18787  smndex1id  18924  isgrpde  18975  xrs0  33008
  Copyright terms: Public domain W3C validator