Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpidd | Structured version Visualization version GIF version |
Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpidd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
grpidd.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
grpidd.z | ⊢ (𝜑 → 0 ∈ 𝐵) |
grpidd.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
grpidd.j | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
Ref | Expression |
---|---|
grpidd | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2737 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | eqid 2737 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | grpidd.z | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) | |
5 | grpidd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
6 | 4, 5 | eleqtrd 2840 | . 2 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
7 | 5 | eleq2d 2823 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐺))) |
8 | 7 | biimpar 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ 𝐵) |
9 | grpidd.p | . . . . . 6 ⊢ (𝜑 → + = (+g‘𝐺)) | |
10 | 9 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → + = (+g‘𝐺)) |
11 | 10 | oveqd 7230 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = ( 0 (+g‘𝐺)𝑥)) |
12 | grpidd.i | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | |
13 | 11, 12 | eqtr3d 2779 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
14 | 8, 13 | syldan 594 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺)𝑥) = 𝑥) |
15 | 10 | oveqd 7230 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = (𝑥(+g‘𝐺) 0 )) |
16 | grpidd.j | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) | |
17 | 15, 16 | eqtr3d 2779 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
18 | 8, 17 | syldan 594 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
19 | 1, 2, 3, 6, 14, 18 | ismgmid2 18140 | 1 ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 0gc0g 16944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-riota 7170 df-ov 7216 df-0g 16946 |
This theorem is referenced by: ress0g 18201 imasmnd2 18210 smndex1id 18338 isgrpde 18388 xrs0 31003 |
Copyright terms: Public domain | W3C validator |