MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidd Structured version   Visualization version   GIF version

Theorem grpidd 17628
Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpidd.b (𝜑𝐵 = (Base‘𝐺))
grpidd.p (𝜑+ = (+g𝐺))
grpidd.z (𝜑0𝐵)
grpidd.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
grpidd.j ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
Assertion
Ref Expression
grpidd (𝜑0 = (0g𝐺))
Distinct variable groups:   𝑥,𝐺   𝜑,𝑥   𝑥, 0
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)

Proof of Theorem grpidd
StepHypRef Expression
1 eqid 2825 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2825 . 2 (0g𝐺) = (0g𝐺)
3 eqid 2825 . 2 (+g𝐺) = (+g𝐺)
4 grpidd.z . . 3 (𝜑0𝐵)
5 grpidd.b . . 3 (𝜑𝐵 = (Base‘𝐺))
64, 5eleqtrd 2908 . 2 (𝜑0 ∈ (Base‘𝐺))
75eleq2d 2892 . . . 4 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐺)))
87biimpar 471 . . 3 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑥𝐵)
9 grpidd.p . . . . . 6 (𝜑+ = (+g𝐺))
109adantr 474 . . . . 5 ((𝜑𝑥𝐵) → + = (+g𝐺))
1110oveqd 6927 . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = ( 0 (+g𝐺)𝑥))
12 grpidd.i . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
1311, 12eqtr3d 2863 . . 3 ((𝜑𝑥𝐵) → ( 0 (+g𝐺)𝑥) = 𝑥)
148, 13syldan 585 . 2 ((𝜑𝑥 ∈ (Base‘𝐺)) → ( 0 (+g𝐺)𝑥) = 𝑥)
1510oveqd 6927 . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = (𝑥(+g𝐺) 0 ))
16 grpidd.j . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
1715, 16eqtr3d 2863 . . 3 ((𝜑𝑥𝐵) → (𝑥(+g𝐺) 0 ) = 𝑥)
188, 17syldan 585 . 2 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺) 0 ) = 𝑥)
191, 2, 3, 6, 14, 18ismgmid2 17627 1 (𝜑0 = (0g𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  cfv 6127  (class class class)co 6910  Basecbs 16229  +gcplusg 16312  0gc0g 16460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-riota 6871  df-ov 6913  df-0g 16462
This theorem is referenced by:  ress0g  17679  imasmnd2  17687  isgrpde  17804  xrs0  30216
  Copyright terms: Public domain W3C validator