MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vid Structured version   Visualization version   GIF version

Theorem lmod0vid 20820
Description: Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
0vlid.v 𝑉 = (Base‘𝑊)
0vlid.a + = (+g𝑊)
0vlid.z 0 = (0g𝑊)
Assertion
Ref Expression
lmod0vid ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))

Proof of Theorem lmod0vid
StepHypRef Expression
1 lmodgrp 20793 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 0vlid.v . . 3 𝑉 = (Base‘𝑊)
3 0vlid.a . . 3 + = (+g𝑊)
4 0vlid.z . . 3 0 = (0g𝑊)
52, 3, 4grpid 18880 . 2 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))
61, 5sylan 580 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  cfv 6477  (class class class)co 7341  Basecbs 17112  +gcplusg 17153  0gc0g 17335  Grpcgrp 18838  LModclmod 20786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-riota 7298  df-ov 7344  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-lmod 20788
This theorem is referenced by:  lmod0vs  20821  dva0g  41045  dvh0g  41129
  Copyright terms: Public domain W3C validator