MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vid Structured version   Visualization version   GIF version

Theorem lmod0vid 19287
Description: Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
0vlid.v 𝑉 = (Base‘𝑊)
0vlid.a + = (+g𝑊)
0vlid.z 0 = (0g𝑊)
Assertion
Ref Expression
lmod0vid ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))

Proof of Theorem lmod0vid
StepHypRef Expression
1 lmodgrp 19262 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 0vlid.v . . 3 𝑉 = (Base‘𝑊)
3 0vlid.a . . 3 + = (+g𝑊)
4 0vlid.z . . 3 0 = (0g𝑊)
52, 3, 4grpid 17844 . 2 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))
61, 5sylan 575 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2106  cfv 6135  (class class class)co 6922  Basecbs 16255  +gcplusg 16338  0gc0g 16486  Grpcgrp 17809  LModclmod 19255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143  df-riota 6883  df-ov 6925  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-lmod 19257
This theorem is referenced by:  lmod0vs  19288  dva0g  37176  dvh0g  37260
  Copyright terms: Public domain W3C validator