![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmod0vid | Structured version Visualization version GIF version |
Description: Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
0vlid.v | ⊢ 𝑉 = (Base‘𝑊) |
0vlid.a | ⊢ + = (+g‘𝑊) |
0vlid.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
lmod0vid | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 20698 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | 0vlid.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | 0vlid.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | 0vlid.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
5 | 2, 3, 4 | grpid 18892 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
6 | 1, 5 | sylan 579 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ‘cfv 6533 (class class class)co 7401 Basecbs 17140 +gcplusg 17193 0gc0g 17381 Grpcgrp 18850 LModclmod 20691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-iota 6485 df-fun 6535 df-fv 6541 df-riota 7357 df-ov 7404 df-0g 17383 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-grp 18853 df-lmod 20693 |
This theorem is referenced by: lmod0vs 20726 dva0g 40354 dvh0g 40438 |
Copyright terms: Public domain | W3C validator |