| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvh0g | Structured version Visualization version GIF version | ||
| Description: The zero vector of vector space H has the zero translation as its first member and the zero trace-preserving endomorphism as the second. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| dvh0g.b | ⊢ 𝐵 = (Base‘𝐾) |
| dvh0g.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvh0g.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dvh0g.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dvh0g.z | ⊢ 0 = (0g‘𝑈) |
| dvh0g.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| dvh0g | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | dvh0g.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | dvh0g.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dvh0g.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | 2, 3, 4 | idltrn 40272 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
| 6 | eqid 2733 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
| 7 | dvh0g.o | . . . . 5 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 8 | 2, 3, 4, 6, 7 | tendo0cl 40912 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
| 9 | dvh0g.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 10 | eqid 2733 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 11 | eqid 2733 | . . . . 5 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 12 | eqid 2733 | . . . . 5 ⊢ (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈)) | |
| 13 | 3, 4, 6, 9, 10, 11, 12 | dvhopvadd 41215 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉) |
| 14 | 1, 5, 8, 5, 8, 13 | syl122anc 1381 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉) |
| 15 | f1oi 6808 | . . . . . 6 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
| 16 | f1of 6770 | . . . . . 6 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
| 17 | fcoi2 6705 | . . . . . 6 ⊢ (( I ↾ 𝐵):𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)) | |
| 18 | 15, 16, 17 | mp2b 10 | . . . . 5 ⊢ (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵) |
| 19 | 18 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
| 20 | eqid 2733 | . . . . . . 7 ⊢ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
| 21 | 3, 4, 6, 9, 10, 20, 12 | dvhfplusr 41206 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
| 22 | 21 | oveqd 7371 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂)) |
| 23 | 2, 3, 4, 6, 7, 20 | tendo0pl 40913 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
| 24 | 8, 23 | mpdan 687 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
| 25 | 22, 24 | eqtrd 2768 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = 𝑂) |
| 26 | 19, 25 | opeq12d 4834 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 〈(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉 = 〈( I ↾ 𝐵), 𝑂〉) |
| 27 | 14, 26 | eqtrd 2768 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈( I ↾ 𝐵), 𝑂〉) |
| 28 | 3, 9, 1 | dvhlmod 41232 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LMod) |
| 29 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 30 | 3, 4, 6, 9, 29 | dvhelvbasei 41210 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → 〈( I ↾ 𝐵), 𝑂〉 ∈ (Base‘𝑈)) |
| 31 | 1, 5, 8, 30 | syl12anc 836 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 〈( I ↾ 𝐵), 𝑂〉 ∈ (Base‘𝑈)) |
| 32 | dvh0g.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 33 | 29, 11, 32 | lmod0vid 20831 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ 〈( I ↾ 𝐵), 𝑂〉 ∈ (Base‘𝑈)) → ((〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈( I ↾ 𝐵), 𝑂〉 ↔ 0 = 〈( I ↾ 𝐵), 𝑂〉)) |
| 34 | 28, 31, 33 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈( I ↾ 𝐵), 𝑂〉 ↔ 0 = 〈( I ↾ 𝐵), 𝑂〉)) |
| 35 | 27, 34 | mpbid 232 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 〈cop 4583 ↦ cmpt 5176 I cid 5515 ↾ cres 5623 ∘ ccom 5625 ⟶wf 6484 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 Basecbs 17124 +gcplusg 17165 Scalarcsca 17168 0gc0g 17347 LModclmod 20797 HLchlt 39472 LHypclh 40106 LTrncltrn 40223 TEndoctendo 40874 DVecHcdvh 41200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-riotaBAD 39075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-tpos 8164 df-undef 8211 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-0g 17349 df-proset 18204 df-poset 18223 df-plt 18238 df-lub 18254 df-glb 18255 df-join 18256 df-meet 18257 df-p0 18333 df-p1 18334 df-lat 18342 df-clat 18409 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-minusg 18854 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 df-dvr 20323 df-drng 20650 df-lmod 20799 df-lvec 21041 df-oposet 39298 df-ol 39300 df-oml 39301 df-covers 39388 df-ats 39389 df-atl 39420 df-cvlat 39444 df-hlat 39473 df-llines 39620 df-lplanes 39621 df-lvols 39622 df-lines 39623 df-psubsp 39625 df-pmap 39626 df-padd 39918 df-lhyp 40110 df-laut 40111 df-ldil 40226 df-ltrn 40227 df-trl 40281 df-tendo 40877 df-edring 40879 df-dvech 41201 |
| This theorem is referenced by: dvheveccl 41234 dib0 41286 dihmeetlem4preN 41428 dihmeetlem13N 41441 dihatlat 41456 dihpN 41458 |
| Copyright terms: Public domain | W3C validator |