Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh0g Structured version   Visualization version   GIF version

Theorem dvh0g 41233
Description: The zero vector of vector space H has the zero translation as its first member and the zero trace-preserving endomorphism as the second. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dvh0g.b 𝐵 = (Base‘𝐾)
dvh0g.h 𝐻 = (LHyp‘𝐾)
dvh0g.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvh0g.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh0g.z 0 = (0g𝑈)
dvh0g.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dvh0g ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ⟨( I ↾ 𝐵), 𝑂⟩)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝑈(𝑓)   𝑂(𝑓)   0 (𝑓)

Proof of Theorem dvh0g
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dvh0g.b . . . . 5 𝐵 = (Base‘𝐾)
3 dvh0g.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dvh0g.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4idltrn 40272 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
6 eqid 2733 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
7 dvh0g.o . . . . 5 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
82, 3, 4, 6, 7tendo0cl 40912 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
9 dvh0g.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 eqid 2733 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
11 eqid 2733 . . . . 5 (+g𝑈) = (+g𝑈)
12 eqid 2733 . . . . 5 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
133, 4, 6, 9, 10, 11, 12dvhopvadd 41215 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (( I ↾ 𝐵) ∈ 𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (⟨( I ↾ 𝐵), 𝑂⟩(+g𝑈)⟨( I ↾ 𝐵), 𝑂⟩) = ⟨(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩)
141, 5, 8, 5, 8, 13syl122anc 1381 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (⟨( I ↾ 𝐵), 𝑂⟩(+g𝑈)⟨( I ↾ 𝐵), 𝑂⟩) = ⟨(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩)
15 f1oi 6808 . . . . . 6 ( I ↾ 𝐵):𝐵1-1-onto𝐵
16 f1of 6770 . . . . . 6 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
17 fcoi2 6705 . . . . . 6 (( I ↾ 𝐵):𝐵𝐵 → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵))
1815, 16, 17mp2b 10 . . . . 5 (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)
1918a1i 11 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵))
20 eqid 2733 . . . . . . 7 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
213, 4, 6, 9, 10, 20, 12dvhfplusr 41206 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
2221oveqd 7371 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂))
232, 3, 4, 6, 7, 20tendo0pl 40913 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
248, 23mpdan 687 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
2522, 24eqtrd 2768 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = 𝑂)
2619, 25opeq12d 4834 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ⟨(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩ = ⟨( I ↾ 𝐵), 𝑂⟩)
2714, 26eqtrd 2768 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (⟨( I ↾ 𝐵), 𝑂⟩(+g𝑈)⟨( I ↾ 𝐵), 𝑂⟩) = ⟨( I ↾ 𝐵), 𝑂⟩)
283, 9, 1dvhlmod 41232 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
29 eqid 2733 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
303, 4, 6, 9, 29dvhelvbasei 41210 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨( I ↾ 𝐵), 𝑂⟩ ∈ (Base‘𝑈))
311, 5, 8, 30syl12anc 836 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ⟨( I ↾ 𝐵), 𝑂⟩ ∈ (Base‘𝑈))
32 dvh0g.z . . . 4 0 = (0g𝑈)
3329, 11, 32lmod0vid 20831 . . 3 ((𝑈 ∈ LMod ∧ ⟨( I ↾ 𝐵), 𝑂⟩ ∈ (Base‘𝑈)) → ((⟨( I ↾ 𝐵), 𝑂⟩(+g𝑈)⟨( I ↾ 𝐵), 𝑂⟩) = ⟨( I ↾ 𝐵), 𝑂⟩ ↔ 0 = ⟨( I ↾ 𝐵), 𝑂⟩))
3428, 31, 33syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((⟨( I ↾ 𝐵), 𝑂⟩(+g𝑈)⟨( I ↾ 𝐵), 𝑂⟩) = ⟨( I ↾ 𝐵), 𝑂⟩ ↔ 0 = ⟨( I ↾ 𝐵), 𝑂⟩))
3527, 34mpbid 232 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ⟨( I ↾ 𝐵), 𝑂⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cop 4583  cmpt 5176   I cid 5515  cres 5623  ccom 5625  wf 6484  1-1-ontowf1o 6487  cfv 6488  (class class class)co 7354  cmpo 7356  Basecbs 17124  +gcplusg 17165  Scalarcsca 17168  0gc0g 17347  LModclmod 20797  HLchlt 39472  LHypclh 40106  LTrncltrn 40223  TEndoctendo 40874  DVecHcdvh 41200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-riotaBAD 39075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-tpos 8164  df-undef 8211  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-0g 17349  df-proset 18204  df-poset 18223  df-plt 18238  df-lub 18254  df-glb 18255  df-join 18256  df-meet 18257  df-p0 18333  df-p1 18334  df-lat 18342  df-clat 18409  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-minusg 18854  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-dvr 20323  df-drng 20650  df-lmod 20799  df-lvec 21041  df-oposet 39298  df-ol 39300  df-oml 39301  df-covers 39388  df-ats 39389  df-atl 39420  df-cvlat 39444  df-hlat 39473  df-llines 39620  df-lplanes 39621  df-lvols 39622  df-lines 39623  df-psubsp 39625  df-pmap 39626  df-padd 39918  df-lhyp 40110  df-laut 40111  df-ldil 40226  df-ltrn 40227  df-trl 40281  df-tendo 40877  df-edring 40879  df-dvech 41201
This theorem is referenced by:  dvheveccl  41234  dib0  41286  dihmeetlem4preN  41428  dihmeetlem13N  41441  dihatlat  41456  dihpN  41458
  Copyright terms: Public domain W3C validator