Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvh0g | Structured version Visualization version GIF version |
Description: The zero vector of vector space H has the zero translation as its first member and the zero trace-preserving endomorphism as the second. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
dvh0g.b | ⊢ 𝐵 = (Base‘𝐾) |
dvh0g.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvh0g.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvh0g.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvh0g.z | ⊢ 0 = (0g‘𝑈) |
dvh0g.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
dvh0g | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dvh0g.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | dvh0g.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dvh0g.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | idltrn 38164 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
6 | eqid 2738 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
7 | dvh0g.o | . . . . 5 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
8 | 2, 3, 4, 6, 7 | tendo0cl 38804 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
9 | dvh0g.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
10 | eqid 2738 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
11 | eqid 2738 | . . . . 5 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
12 | eqid 2738 | . . . . 5 ⊢ (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈)) | |
13 | 3, 4, 6, 9, 10, 11, 12 | dvhopvadd 39107 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉) |
14 | 1, 5, 8, 5, 8, 13 | syl122anc 1378 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉) |
15 | f1oi 6754 | . . . . . 6 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
16 | f1of 6716 | . . . . . 6 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
17 | fcoi2 6649 | . . . . . 6 ⊢ (( I ↾ 𝐵):𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)) | |
18 | 15, 16, 17 | mp2b 10 | . . . . 5 ⊢ (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵) |
19 | 18 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
20 | eqid 2738 | . . . . . . 7 ⊢ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
21 | 3, 4, 6, 9, 10, 20, 12 | dvhfplusr 39098 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
22 | 21 | oveqd 7292 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂)) |
23 | 2, 3, 4, 6, 7, 20 | tendo0pl 38805 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
24 | 8, 23 | mpdan 684 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
25 | 22, 24 | eqtrd 2778 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = 𝑂) |
26 | 19, 25 | opeq12d 4812 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 〈(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉 = 〈( I ↾ 𝐵), 𝑂〉) |
27 | 14, 26 | eqtrd 2778 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈( I ↾ 𝐵), 𝑂〉) |
28 | 3, 9, 1 | dvhlmod 39124 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LMod) |
29 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
30 | 3, 4, 6, 9, 29 | dvhelvbasei 39102 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → 〈( I ↾ 𝐵), 𝑂〉 ∈ (Base‘𝑈)) |
31 | 1, 5, 8, 30 | syl12anc 834 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 〈( I ↾ 𝐵), 𝑂〉 ∈ (Base‘𝑈)) |
32 | dvh0g.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
33 | 29, 11, 32 | lmod0vid 20155 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ 〈( I ↾ 𝐵), 𝑂〉 ∈ (Base‘𝑈)) → ((〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈( I ↾ 𝐵), 𝑂〉 ↔ 0 = 〈( I ↾ 𝐵), 𝑂〉)) |
34 | 28, 31, 33 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈( I ↾ 𝐵), 𝑂〉 ↔ 0 = 〈( I ↾ 𝐵), 𝑂〉)) |
35 | 27, 34 | mpbid 231 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 〈cop 4567 ↦ cmpt 5157 I cid 5488 ↾ cres 5591 ∘ ccom 5593 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 Basecbs 16912 +gcplusg 16962 Scalarcsca 16965 0gc0g 17150 LModclmod 20123 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 TEndoctendo 38766 DVecHcdvh 39092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-undef 8089 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-lmod 20125 df-lvec 20365 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-tendo 38769 df-edring 38771 df-dvech 39093 |
This theorem is referenced by: dvheveccl 39126 dib0 39178 dihmeetlem4preN 39320 dihmeetlem13N 39333 dihatlat 39348 dihpN 39350 |
Copyright terms: Public domain | W3C validator |