![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvh0g | Structured version Visualization version GIF version |
Description: The zero vector of vector space H has the zero translation as its first member and the zero trace-preserving endomorphism as the second. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
dvh0g.b | ⊢ 𝐵 = (Base‘𝐾) |
dvh0g.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvh0g.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvh0g.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvh0g.z | ⊢ 0 = (0g‘𝑈) |
dvh0g.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
dvh0g | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dvh0g.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | dvh0g.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dvh0g.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | idltrn 40107 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
6 | eqid 2740 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
7 | dvh0g.o | . . . . 5 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
8 | 2, 3, 4, 6, 7 | tendo0cl 40747 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
9 | dvh0g.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
10 | eqid 2740 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
11 | eqid 2740 | . . . . 5 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
12 | eqid 2740 | . . . . 5 ⊢ (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈)) | |
13 | 3, 4, 6, 9, 10, 11, 12 | dvhopvadd 41050 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉) |
14 | 1, 5, 8, 5, 8, 13 | syl122anc 1379 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉) |
15 | f1oi 6900 | . . . . . 6 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
16 | f1of 6862 | . . . . . 6 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
17 | fcoi2 6796 | . . . . . 6 ⊢ (( I ↾ 𝐵):𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)) | |
18 | 15, 16, 17 | mp2b 10 | . . . . 5 ⊢ (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵) |
19 | 18 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
20 | eqid 2740 | . . . . . . 7 ⊢ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
21 | 3, 4, 6, 9, 10, 20, 12 | dvhfplusr 41041 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
22 | 21 | oveqd 7465 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂)) |
23 | 2, 3, 4, 6, 7, 20 | tendo0pl 40748 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
24 | 8, 23 | mpdan 686 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
25 | 22, 24 | eqtrd 2780 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = 𝑂) |
26 | 19, 25 | opeq12d 4905 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 〈(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉 = 〈( I ↾ 𝐵), 𝑂〉) |
27 | 14, 26 | eqtrd 2780 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈( I ↾ 𝐵), 𝑂〉) |
28 | 3, 9, 1 | dvhlmod 41067 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LMod) |
29 | eqid 2740 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
30 | 3, 4, 6, 9, 29 | dvhelvbasei 41045 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → 〈( I ↾ 𝐵), 𝑂〉 ∈ (Base‘𝑈)) |
31 | 1, 5, 8, 30 | syl12anc 836 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 〈( I ↾ 𝐵), 𝑂〉 ∈ (Base‘𝑈)) |
32 | dvh0g.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
33 | 29, 11, 32 | lmod0vid 20914 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ 〈( I ↾ 𝐵), 𝑂〉 ∈ (Base‘𝑈)) → ((〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈( I ↾ 𝐵), 𝑂〉 ↔ 0 = 〈( I ↾ 𝐵), 𝑂〉)) |
34 | 28, 31, 33 | syl2anc 583 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈( I ↾ 𝐵), 𝑂〉 ↔ 0 = 〈( I ↾ 𝐵), 𝑂〉)) |
35 | 27, 34 | mpbid 232 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 ↦ cmpt 5249 I cid 5592 ↾ cres 5702 ∘ ccom 5704 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 0gc0g 17499 LModclmod 20880 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 TEndoctendo 40709 DVecHcdvh 41035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-drng 20753 df-lmod 20882 df-lvec 21125 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tendo 40712 df-edring 40714 df-dvech 41036 |
This theorem is referenced by: dvheveccl 41069 dib0 41121 dihmeetlem4preN 41263 dihmeetlem13N 41276 dihatlat 41291 dihpN 41293 |
Copyright terms: Public domain | W3C validator |