Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmod0vrid | Structured version Visualization version GIF version |
Description: Right identity law for the zero vector. (ax-hvaddid 29655 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
0vlid.v | ⊢ 𝑉 = (Base‘𝑊) |
0vlid.a | ⊢ + = (+g‘𝑊) |
0vlid.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
lmod0vrid | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 20237 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | 0vlid.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | 0vlid.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | 0vlid.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
5 | 2, 3, 4 | grprid 18707 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
6 | 1, 5 | sylan 580 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ‘cfv 6480 (class class class)co 7338 Basecbs 17010 +gcplusg 17060 0gc0g 17248 Grpcgrp 18674 LModclmod 20230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6432 df-fun 6482 df-fv 6488 df-riota 7294 df-ov 7341 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 df-lmod 20232 |
This theorem is referenced by: lmodvneg1 20273 lssvscl 20324 lspfixed 20497 lsmcv 20510 lspsolvlem 20511 lspsolv 20512 lfl0 37383 lflmul 37386 lshpkrlem1 37428 lclkrlem2j 39835 lcfrlem7 39867 mapdh6dN 40058 hdmap1l6d 40132 |
Copyright terms: Public domain | W3C validator |