MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vrid Structured version   Visualization version   GIF version

Theorem lmod0vrid 19656
Description: Right identity law for the zero vector. (ax-hvaddid 28785 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
0vlid.v 𝑉 = (Base‘𝑊)
0vlid.a + = (+g𝑊)
0vlid.z 0 = (0g𝑊)
Assertion
Ref Expression
lmod0vrid ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 + 0 ) = 𝑋)

Proof of Theorem lmod0vrid
StepHypRef Expression
1 lmodgrp 19632 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 0vlid.v . . 3 𝑉 = (Base‘𝑊)
3 0vlid.a . . 3 + = (+g𝑊)
4 0vlid.z . . 3 0 = (0g𝑊)
52, 3, 4grprid 18125 . 2 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → (𝑋 + 0 ) = 𝑋)
61, 5sylan 583 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 + 0 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  cfv 6334  (class class class)co 7140  Basecbs 16474  +gcplusg 16556  0gc0g 16704  Grpcgrp 18094  LModclmod 19625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-iota 6293  df-fun 6336  df-fv 6342  df-riota 7098  df-ov 7143  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-lmod 19627
This theorem is referenced by:  lmodvneg1  19668  lssvscl  19718  lspfixed  19891  lsmcv  19904  lspsolvlem  19905  lspsolv  19906  lfl0  36320  lflmul  36323  lshpkrlem1  36365  lclkrlem2j  38771  lcfrlem7  38803  mapdh6dN  38994  hdmap1l6d  39068
  Copyright terms: Public domain W3C validator