Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dva0g Structured version   Visualization version   GIF version

Theorem dva0g 37097
Description: The zero vector of partial vector space A. (Contributed by NM, 9-Sep-2014.)
Hypotheses
Ref Expression
dva0g.b 𝐵 = (Base‘𝐾)
dva0g.h 𝐻 = (LHyp‘𝐾)
dva0g.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dva0g.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dva0g.z 0 = (0g𝑈)
Assertion
Ref Expression
dva0g ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ( I ↾ 𝐵))

Proof of Theorem dva0g
StepHypRef Expression
1 id 22 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dva0g.b . . . . 5 𝐵 = (Base‘𝐾)
3 dva0g.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dva0g.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4idltrn 36220 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
6 dva0g.u . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
7 eqid 2825 . . . . 5 (+g𝑈) = (+g𝑈)
83, 4, 6, 7dvavadd 37085 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ ( I ↾ 𝐵) ∈ 𝑇)) → (( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)))
91, 5, 5, 8syl12anc 870 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)))
10 f1oi 6419 . . . 4 ( I ↾ 𝐵):𝐵1-1-onto𝐵
11 f1of 6382 . . . 4 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
12 fcoi2 6320 . . . 4 (( I ↾ 𝐵):𝐵𝐵 → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵))
1310, 11, 12mp2b 10 . . 3 (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)
149, 13syl6eq 2877 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = ( I ↾ 𝐵))
153, 6dvalvec 37096 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
16 lveclmod 19472 . . . 4 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
1715, 16syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
18 eqid 2825 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
193, 4, 6, 18dvavbase 37083 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = 𝑇)
205, 19eleqtrrd 2909 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ (Base‘𝑈))
21 dva0g.z . . . 4 0 = (0g𝑈)
2218, 7, 21lmod0vid 19258 . . 3 ((𝑈 ∈ LMod ∧ ( I ↾ 𝐵) ∈ (Base‘𝑈)) → ((( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ 0 = ( I ↾ 𝐵)))
2317, 20, 22syl2anc 579 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ 0 = ( I ↾ 𝐵)))
2414, 23mpbid 224 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164   I cid 5251  cres 5348  ccom 5350  wf 6123  1-1-ontowf1o 6126  cfv 6127  (class class class)co 6910  Basecbs 16229  +gcplusg 16312  0gc0g 16460  LModclmod 19226  LVecclvec 19468  HLchlt 35420  LHypclh 36054  LTrncltrn 36171  DVecAcdveca 37072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-riotaBAD 35023
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-tpos 7622  df-undef 7669  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-sca 16328  df-vsca 16329  df-0g 16462  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-p1 17400  df-lat 17406  df-clat 17468  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-drng 19112  df-lmod 19228  df-lvec 19469  df-oposet 35246  df-ol 35248  df-oml 35249  df-covers 35336  df-ats 35337  df-atl 35368  df-cvlat 35392  df-hlat 35421  df-llines 35568  df-lplanes 35569  df-lvols 35570  df-lines 35571  df-psubsp 35573  df-pmap 35574  df-padd 35866  df-lhyp 36058  df-laut 36059  df-ldil 36174  df-ltrn 36175  df-trl 36229  df-tgrp 36813  df-tendo 36825  df-edring 36827  df-dveca 37073
This theorem is referenced by:  dia2dimlem7  37140
  Copyright terms: Public domain W3C validator