![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dva0g | Structured version Visualization version GIF version |
Description: The zero vector of partial vector space A. (Contributed by NM, 9-Sep-2014.) |
Ref | Expression |
---|---|
dva0g.b | ⊢ 𝐵 = (Base‘𝐾) |
dva0g.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dva0g.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dva0g.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
dva0g.z | ⊢ 0 = (0g‘𝑈) |
Ref | Expression |
---|---|
dva0g | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dva0g.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | dva0g.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dva0g.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | idltrn 39016 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
6 | dva0g.u | . . . . 5 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
7 | eqid 2732 | . . . . 5 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
8 | 3, 4, 6, 7 | dvavadd 39881 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ ( I ↾ 𝐵) ∈ 𝑇)) → (( I ↾ 𝐵)(+g‘𝑈)( I ↾ 𝐵)) = (( I ↾ 𝐵) ∘ ( I ↾ 𝐵))) |
9 | 1, 5, 5, 8 | syl12anc 835 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝐵)(+g‘𝑈)( I ↾ 𝐵)) = (( I ↾ 𝐵) ∘ ( I ↾ 𝐵))) |
10 | f1oi 6871 | . . . 4 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
11 | f1of 6833 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
12 | fcoi2 6766 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)) | |
13 | 10, 11, 12 | mp2b 10 | . . 3 ⊢ (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵) |
14 | 9, 13 | eqtrdi 2788 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝐵)(+g‘𝑈)( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
15 | 3, 6 | dvalvec 39892 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LVec) |
16 | lveclmod 20716 | . . . 4 ⊢ (𝑈 ∈ LVec → 𝑈 ∈ LMod) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LMod) |
18 | eqid 2732 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
19 | 3, 4, 6, 18 | dvavbase 39879 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝑈) = 𝑇) |
20 | 5, 19 | eleqtrrd 2836 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ (Base‘𝑈)) |
21 | dva0g.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
22 | 18, 7, 21 | lmod0vid 20503 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ ( I ↾ 𝐵) ∈ (Base‘𝑈)) → ((( I ↾ 𝐵)(+g‘𝑈)( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ 0 = ( I ↾ 𝐵))) |
23 | 17, 20, 22 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((( I ↾ 𝐵)(+g‘𝑈)( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ 0 = ( I ↾ 𝐵))) |
24 | 14, 23 | mpbid 231 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 I cid 5573 ↾ cres 5678 ∘ ccom 5680 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 0gc0g 17384 LModclmod 20470 LVecclvec 20712 HLchlt 38215 LHypclh 38850 LTrncltrn 38967 DVecAcdveca 39868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-riotaBAD 37818 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-undef 8257 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17386 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-dvr 20214 df-drng 20358 df-lmod 20472 df-lvec 20713 df-oposet 38041 df-ol 38043 df-oml 38044 df-covers 38131 df-ats 38132 df-atl 38163 df-cvlat 38187 df-hlat 38216 df-llines 38364 df-lplanes 38365 df-lvols 38366 df-lines 38367 df-psubsp 38369 df-pmap 38370 df-padd 38662 df-lhyp 38854 df-laut 38855 df-ldil 38970 df-ltrn 38971 df-trl 39025 df-tgrp 39609 df-tendo 39621 df-edring 39623 df-dveca 39869 |
This theorem is referenced by: dia2dimlem7 39936 |
Copyright terms: Public domain | W3C validator |