Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dva0g Structured version   Visualization version   GIF version

Theorem dva0g 39490
Description: The zero vector of partial vector space A. (Contributed by NM, 9-Sep-2014.)
Hypotheses
Ref Expression
dva0g.b 𝐵 = (Base‘𝐾)
dva0g.h 𝐻 = (LHyp‘𝐾)
dva0g.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dva0g.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dva0g.z 0 = (0g𝑈)
Assertion
Ref Expression
dva0g ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ( I ↾ 𝐵))

Proof of Theorem dva0g
StepHypRef Expression
1 id 22 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dva0g.b . . . . 5 𝐵 = (Base‘𝐾)
3 dva0g.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dva0g.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4idltrn 38613 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
6 dva0g.u . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
7 eqid 2736 . . . . 5 (+g𝑈) = (+g𝑈)
83, 4, 6, 7dvavadd 39478 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ ( I ↾ 𝐵) ∈ 𝑇)) → (( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)))
91, 5, 5, 8syl12anc 835 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)))
10 f1oi 6822 . . . 4 ( I ↾ 𝐵):𝐵1-1-onto𝐵
11 f1of 6784 . . . 4 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
12 fcoi2 6717 . . . 4 (( I ↾ 𝐵):𝐵𝐵 → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵))
1310, 11, 12mp2b 10 . . 3 (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)
149, 13eqtrdi 2792 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = ( I ↾ 𝐵))
153, 6dvalvec 39489 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
16 lveclmod 20567 . . . 4 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
1715, 16syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
18 eqid 2736 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
193, 4, 6, 18dvavbase 39476 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = 𝑇)
205, 19eleqtrrd 2841 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ (Base‘𝑈))
21 dva0g.z . . . 4 0 = (0g𝑈)
2218, 7, 21lmod0vid 20354 . . 3 ((𝑈 ∈ LMod ∧ ( I ↾ 𝐵) ∈ (Base‘𝑈)) → ((( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ 0 = ( I ↾ 𝐵)))
2317, 20, 22syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ 0 = ( I ↾ 𝐵)))
2414, 23mpbid 231 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   I cid 5530  cres 5635  ccom 5637  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  0gc0g 17321  LModclmod 20322  LVecclvec 20563  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  DVecAcdveca 39465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-lmod 20324  df-lvec 20564  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tgrp 39206  df-tendo 39218  df-edring 39220  df-dveca 39466
This theorem is referenced by:  dia2dimlem7  39533
  Copyright terms: Public domain W3C validator