Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dva0g Structured version   Visualization version   GIF version

Theorem dva0g 40388
Description: The zero vector of partial vector space A. (Contributed by NM, 9-Sep-2014.)
Hypotheses
Ref Expression
dva0g.b 𝐵 = (Base‘𝐾)
dva0g.h 𝐻 = (LHyp‘𝐾)
dva0g.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dva0g.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dva0g.z 0 = (0g𝑈)
Assertion
Ref Expression
dva0g ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ( I ↾ 𝐵))

Proof of Theorem dva0g
StepHypRef Expression
1 id 22 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dva0g.b . . . . 5 𝐵 = (Base‘𝐾)
3 dva0g.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dva0g.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4idltrn 39511 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
6 dva0g.u . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
7 eqid 2724 . . . . 5 (+g𝑈) = (+g𝑈)
83, 4, 6, 7dvavadd 40376 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ ( I ↾ 𝐵) ∈ 𝑇)) → (( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)))
91, 5, 5, 8syl12anc 834 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)))
10 f1oi 6861 . . . 4 ( I ↾ 𝐵):𝐵1-1-onto𝐵
11 f1of 6823 . . . 4 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
12 fcoi2 6756 . . . 4 (( I ↾ 𝐵):𝐵𝐵 → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵))
1310, 11, 12mp2b 10 . . 3 (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)
149, 13eqtrdi 2780 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = ( I ↾ 𝐵))
153, 6dvalvec 40387 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
16 lveclmod 20944 . . . 4 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
1715, 16syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
18 eqid 2724 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
193, 4, 6, 18dvavbase 40374 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = 𝑇)
205, 19eleqtrrd 2828 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ (Base‘𝑈))
21 dva0g.z . . . 4 0 = (0g𝑈)
2218, 7, 21lmod0vid 20730 . . 3 ((𝑈 ∈ LMod ∧ ( I ↾ 𝐵) ∈ (Base‘𝑈)) → ((( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ 0 = ( I ↾ 𝐵)))
2317, 20, 22syl2anc 583 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((( I ↾ 𝐵)(+g𝑈)( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ 0 = ( I ↾ 𝐵)))
2414, 23mpbid 231 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098   I cid 5563  cres 5668  ccom 5670  wf 6529  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  Basecbs 17143  +gcplusg 17196  0gc0g 17384  LModclmod 20696  LVecclvec 20940  HLchlt 38710  LHypclh 39345  LTrncltrn 39462  DVecAcdveca 40363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-riotaBAD 38313
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-undef 8253  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17386  df-proset 18250  df-poset 18268  df-plt 18285  df-lub 18301  df-glb 18302  df-join 18303  df-meet 18304  df-p0 18380  df-p1 18381  df-lat 18387  df-clat 18454  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-grp 18856  df-minusg 18857  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-dvr 20293  df-drng 20579  df-lmod 20698  df-lvec 20941  df-oposet 38536  df-ol 38538  df-oml 38539  df-covers 38626  df-ats 38627  df-atl 38658  df-cvlat 38682  df-hlat 38711  df-llines 38859  df-lplanes 38860  df-lvols 38861  df-lines 38862  df-psubsp 38864  df-pmap 38865  df-padd 39157  df-lhyp 39349  df-laut 39350  df-ldil 39465  df-ltrn 39466  df-trl 39520  df-tgrp 40104  df-tendo 40116  df-edring 40118  df-dveca 40364
This theorem is referenced by:  dia2dimlem7  40431
  Copyright terms: Public domain W3C validator