![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpid | Structured version Visualization version GIF version |
Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.) |
Ref | Expression |
---|---|
grpinveu.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinveu.p | ⊢ + = (+g‘𝐺) |
grpinveu.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2742 | . 2 ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
2 | grpinveu.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpinveu.o | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
4 | 2, 3 | grpidcl 18996 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
5 | grpinveu.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
6 | 2, 5 | grprcan 19004 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )) |
7 | 6 | 3exp2 1353 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ( 0 ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))))) |
8 | 4, 7 | mpid 44 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )))) |
9 | 8 | pm2.43d 53 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))) |
10 | 9 | imp 406 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )) |
11 | 2, 5, 3 | grplid 18998 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
12 | 11 | eqeq2d 2746 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ (𝑋 + 𝑋) = 𝑋)) |
13 | 10, 12 | bitr3d 281 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 = 0 ↔ (𝑋 + 𝑋) = 𝑋)) |
14 | 1, 13 | bitr2id 284 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 0gc0g 17486 Grpcgrp 18964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-riota 7388 df-ov 7434 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 |
This theorem is referenced by: isgrpid2 19007 grpidd2 19008 subg0 19163 qus0 19220 ghmid 19253 isdrng2 20760 lmod0vid 20909 cnfld0 21423 psr0 21996 psd1 22189 ldual0v 39132 erng0g 40977 |
Copyright terms: Public domain | W3C validator |