![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpid | Structured version Visualization version GIF version |
Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.) |
Ref | Expression |
---|---|
grpinveu.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinveu.p | ⊢ + = (+g‘𝐺) |
grpinveu.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2735 | . 2 ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
2 | grpinveu.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpinveu.o | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
4 | 2, 3 | grpidcl 18921 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
5 | grpinveu.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
6 | 2, 5 | grprcan 18929 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )) |
7 | 6 | 3exp2 1352 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ( 0 ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))))) |
8 | 4, 7 | mpid 44 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )))) |
9 | 8 | pm2.43d 53 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))) |
10 | 9 | imp 406 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )) |
11 | 2, 5, 3 | grplid 18923 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
12 | 11 | eqeq2d 2739 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ (𝑋 + 𝑋) = 𝑋)) |
13 | 10, 12 | bitr3d 281 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 = 0 ↔ (𝑋 + 𝑋) = 𝑋)) |
14 | 1, 13 | bitr2id 284 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 +gcplusg 17232 0gc0g 17420 Grpcgrp 18889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-riota 7376 df-ov 7423 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 |
This theorem is referenced by: isgrpid2 18932 grpidd2 18933 subg0 19086 qus0 19143 ghmid 19175 isdrng2 20637 lmod0vid 20776 cnfld0 21319 psr0 21900 psd1 22090 ldual0v 38622 erng0g 40467 |
Copyright terms: Public domain | W3C validator |