MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpid Structured version   Visualization version   GIF version

Theorem grpid 19015
Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b 𝐵 = (Base‘𝐺)
grpinveu.p + = (+g𝐺)
grpinveu.o 0 = (0g𝐺)
Assertion
Ref Expression
grpid ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))

Proof of Theorem grpid
StepHypRef Expression
1 eqcom 2747 . 2 ( 0 = 𝑋𝑋 = 0 )
2 grpinveu.b . . . . . . 7 𝐵 = (Base‘𝐺)
3 grpinveu.o . . . . . . 7 0 = (0g𝐺)
42, 3grpidcl 19005 . . . . . 6 (𝐺 ∈ Grp → 0𝐵)
5 grpinveu.p . . . . . . . 8 + = (+g𝐺)
62, 5grprcan 19013 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵0𝐵𝑋𝐵)) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))
763exp2 1354 . . . . . 6 (𝐺 ∈ Grp → (𝑋𝐵 → ( 0𝐵 → (𝑋𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )))))
84, 7mpid 44 . . . . 5 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑋𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))))
98pm2.43d 53 . . . 4 (𝐺 ∈ Grp → (𝑋𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )))
109imp 406 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))
112, 5, 3grplid 19007 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
1211eqeq2d 2751 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ (𝑋 + 𝑋) = 𝑋))
1310, 12bitr3d 281 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 = 0 ↔ (𝑋 + 𝑋) = 𝑋))
141, 13bitr2id 284 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-riota 7404  df-ov 7451  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976
This theorem is referenced by:  isgrpid2  19016  grpidd2  19017  subg0  19172  qus0  19229  ghmid  19262  isdrng2  20765  lmod0vid  20914  cnfld0  21428  psr0  22001  psd1  22194  ldual0v  39106  erng0g  40951
  Copyright terms: Public domain W3C validator