| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpid | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinveu.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinveu.p | ⊢ + = (+g‘𝐺) |
| grpinveu.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2738 | . 2 ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
| 2 | grpinveu.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpinveu.o | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
| 4 | 2, 3 | grpidcl 18884 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 5 | grpinveu.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
| 6 | 2, 5 | grprcan 18892 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )) |
| 7 | 6 | 3exp2 1355 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ( 0 ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))))) |
| 8 | 4, 7 | mpid 44 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )))) |
| 9 | 8 | pm2.43d 53 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))) |
| 10 | 9 | imp 406 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )) |
| 11 | 2, 5, 3 | grplid 18886 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| 12 | 11 | eqeq2d 2742 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ (𝑋 + 𝑋) = 𝑋)) |
| 13 | 10, 12 | bitr3d 281 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 = 0 ↔ (𝑋 + 𝑋) = 𝑋)) |
| 14 | 1, 13 | bitr2id 284 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 +gcplusg 17167 0gc0g 17349 Grpcgrp 18852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6443 df-fun 6489 df-fv 6495 df-riota 7309 df-ov 7355 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-grp 18855 |
| This theorem is referenced by: isgrpid2 18895 grpidd2 18896 subg0 19051 qus0 19107 ghmid 19140 isdrng2 20664 lmod0vid 20833 cnfld0 21335 psr0 21901 psd1 22088 ldual0v 39255 erng0g 41099 |
| Copyright terms: Public domain | W3C validator |