MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpid Structured version   Visualization version   GIF version

Theorem grpid 17896
Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b 𝐵 = (Base‘𝐺)
grpinveu.p + = (+g𝐺)
grpinveu.o 0 = (0g𝐺)
Assertion
Ref Expression
grpid ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))

Proof of Theorem grpid
StepHypRef Expression
1 eqcom 2801 . 2 ( 0 = 𝑋𝑋 = 0 )
2 grpinveu.b . . . . . . 7 𝐵 = (Base‘𝐺)
3 grpinveu.o . . . . . . 7 0 = (0g𝐺)
42, 3grpidcl 17889 . . . . . 6 (𝐺 ∈ Grp → 0𝐵)
5 grpinveu.p . . . . . . . 8 + = (+g𝐺)
62, 5grprcan 17894 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵0𝐵𝑋𝐵)) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))
763exp2 1347 . . . . . 6 (𝐺 ∈ Grp → (𝑋𝐵 → ( 0𝐵 → (𝑋𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )))))
84, 7mpid 44 . . . . 5 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑋𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))))
98pm2.43d 53 . . . 4 (𝐺 ∈ Grp → (𝑋𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )))
109imp 407 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))
112, 5, 3grplid 17891 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
1211eqeq2d 2804 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ (𝑋 + 𝑋) = 𝑋))
1310, 12bitr3d 282 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 = 0 ↔ (𝑋 + 𝑋) = 𝑋))
141, 13syl5rbb 285 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2080  cfv 6228  (class class class)co 7019  Basecbs 16312  +gcplusg 16394  0gc0g 16542  Grpcgrp 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-nul 4214  df-if 4384  df-sn 4475  df-pr 4477  df-op 4481  df-uni 4748  df-br 4965  df-opab 5027  df-mpt 5044  df-id 5351  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-iota 6192  df-fun 6230  df-fv 6236  df-riota 6980  df-ov 7022  df-0g 16544  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-grp 17864
This theorem is referenced by:  isgrpid2  17897  grpidd2  17898  subg0  18039  qus0  18091  ghmid  18105  symgid  18260  isdrng2  19202  lmod0vid  19356  psr0  19867  cnfld0  20251  ldual0v  35830  erng0g  37674
  Copyright terms: Public domain W3C validator