Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpid Structured version   Visualization version   GIF version

Theorem grpid 18135
 Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b 𝐵 = (Base‘𝐺)
grpinveu.p + = (+g𝐺)
grpinveu.o 0 = (0g𝐺)
Assertion
Ref Expression
grpid ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))

Proof of Theorem grpid
StepHypRef Expression
1 eqcom 2805 . 2 ( 0 = 𝑋𝑋 = 0 )
2 grpinveu.b . . . . . . 7 𝐵 = (Base‘𝐺)
3 grpinveu.o . . . . . . 7 0 = (0g𝐺)
42, 3grpidcl 18127 . . . . . 6 (𝐺 ∈ Grp → 0𝐵)
5 grpinveu.p . . . . . . . 8 + = (+g𝐺)
62, 5grprcan 18133 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵0𝐵𝑋𝐵)) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))
763exp2 1351 . . . . . 6 (𝐺 ∈ Grp → (𝑋𝐵 → ( 0𝐵 → (𝑋𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )))))
84, 7mpid 44 . . . . 5 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑋𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))))
98pm2.43d 53 . . . 4 (𝐺 ∈ Grp → (𝑋𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )))
109imp 410 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))
112, 5, 3grplid 18129 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
1211eqeq2d 2809 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ (𝑋 + 𝑋) = 𝑋))
1310, 12bitr3d 284 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 = 0 ↔ (𝑋 + 𝑋) = 𝑋))
141, 13syl5rbb 287 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ‘cfv 6325  (class class class)co 7136  Basecbs 16478  +gcplusg 16560  0gc0g 16708  Grpcgrp 18098 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-iota 6284  df-fun 6327  df-fv 6333  df-riota 7094  df-ov 7139  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101 This theorem is referenced by:  isgrpid2  18136  grpidd2  18137  subg0  18281  qus0  18334  ghmid  18360  isdrng2  19509  lmod0vid  19663  cnfld0  20119  psr0  20643  ldual0v  36465  erng0g  38309
 Copyright terms: Public domain W3C validator