| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpid | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinveu.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinveu.p | ⊢ + = (+g‘𝐺) |
| grpinveu.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2743 | . 2 ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
| 2 | grpinveu.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpinveu.o | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
| 4 | 2, 3 | grpidcl 18953 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 5 | grpinveu.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
| 6 | 2, 5 | grprcan 18961 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )) |
| 7 | 6 | 3exp2 1355 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ( 0 ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))))) |
| 8 | 4, 7 | mpid 44 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )))) |
| 9 | 8 | pm2.43d 53 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 ))) |
| 10 | 9 | imp 406 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ 𝑋 = 0 )) |
| 11 | 2, 5, 3 | grplid 18955 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| 12 | 11 | eqeq2d 2747 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = ( 0 + 𝑋) ↔ (𝑋 + 𝑋) = 𝑋)) |
| 13 | 10, 12 | bitr3d 281 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 = 0 ↔ (𝑋 + 𝑋) = 𝑋)) |
| 14 | 1, 13 | bitr2id 284 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Grpcgrp 18921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-riota 7367 df-ov 7413 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 |
| This theorem is referenced by: isgrpid2 18964 grpidd2 18965 subg0 19120 qus0 19177 ghmid 19210 isdrng2 20708 lmod0vid 20856 cnfld0 21360 psr0 21923 psd1 22110 ldual0v 39173 erng0g 41018 |
| Copyright terms: Public domain | W3C validator |