| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmod0vs | Structured version Visualization version GIF version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30939 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmod0vs.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmod0vs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmod0vs.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmod0vs.o | ⊢ 𝑂 = (0g‘𝐹) |
| lmod0vs.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| lmod0vs | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
| 2 | lmod0vs.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | lmodring 20774 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Ring) |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | lmod0vs.o | . . . . . . 7 ⊢ 𝑂 = (0g‘𝐹) | |
| 7 | 5, 6 | ring0cl 20176 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝑂 ∈ (Base‘𝐹)) |
| 8 | 4, 7 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑂 ∈ (Base‘𝐹)) |
| 9 | simpr 484 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 10 | lmod0vs.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 12 | lmod0vs.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 13 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 20792 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉)) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
| 15 | 1, 8, 8, 9, 14 | syl13anc 1374 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
| 16 | ringgrp 20147 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 17 | 4, 16 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Grp) |
| 18 | 5, 13, 6 | grplid 18899 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐹)) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
| 19 | 17, 8, 18 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
| 20 | 19 | oveq1d 7402 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = (𝑂 · 𝑋)) |
| 21 | 15, 20 | eqtr3d 2766 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋)) |
| 22 | 10, 2, 12, 5 | lmodvscl 20784 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
| 23 | 1, 8, 9, 22 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
| 24 | lmod0vs.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 25 | 10, 11, 24 | lmod0vid 20800 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 · 𝑋) ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
| 26 | 23, 25 | syldan 591 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
| 27 | 21, 26 | mpbid 232 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 0 = (𝑂 · 𝑋)) |
| 28 | 27 | eqcomd 2735 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Scalarcsca 17223 ·𝑠 cvsca 17224 0gc0g 17402 Grpcgrp 18865 Ringcrg 20142 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-ring 20144 df-lmod 20768 |
| This theorem is referenced by: lmodvs0 20802 lmodvsmmulgdi 20803 lcomfsupp 20808 lmodvneg1 20811 mptscmfsupp0 20833 lvecvs0or 21018 lssvs0or 21020 lspsneleq 21025 lspdisj 21035 lspfixed 21038 lspexch 21039 lspsolvlem 21052 lspsolv 21053 uvcresum 21702 frlmsslsp 21705 frlmup1 21707 frlmup2 21708 ascl0 21793 mplcoe1 21944 mplbas2 21949 ply10s0 22142 ply1scl0OLD 22177 gsummoncoe1 22195 evls1fpws 22256 pmatcollpwscmatlem1 22676 idpm2idmp 22688 mp2pm2mplem4 22696 pm2mpmhmlem1 22705 monmat2matmon 22711 cpmidpmatlem3 22759 clm0vs 24995 plypf1 26117 lmodslmd 33157 r1p0 33571 ply1degltdimlem 33618 lbsdiflsp0 33622 fedgmullem2 33626 lshpkrlem1 39103 ldual0vs 39153 lclkrlem1 41500 lcd0vs 41609 baerlem3lem1 41701 baerlem5blem1 41703 hdmap14lem2a 41861 hdmap14lem4a 41865 hdmap14lem6 41867 hgmapval0 41886 selvvvval 42573 prjspersym 42595 prjspreln0 42597 prjspner1 42614 lmod0rng 48217 scmsuppss 48359 lmodvsmdi 48367 ply1mulgsumlem4 48378 lincval1 48408 lincvalsc0 48410 linc0scn0 48412 linc1 48414 ldepsprlem 48461 |
| Copyright terms: Public domain | W3C validator |