Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmod0vs | Structured version Visualization version GIF version |
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 29273 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmod0vs.v | ⊢ 𝑉 = (Base‘𝑊) |
lmod0vs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmod0vs.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmod0vs.o | ⊢ 𝑂 = (0g‘𝐹) |
lmod0vs.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
lmod0vs | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
2 | lmod0vs.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 2 | lmodring 20046 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Ring) |
5 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | lmod0vs.o | . . . . . . 7 ⊢ 𝑂 = (0g‘𝐹) | |
7 | 5, 6 | ring0cl 19723 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝑂 ∈ (Base‘𝐹)) |
8 | 4, 7 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑂 ∈ (Base‘𝐹)) |
9 | simpr 484 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
10 | lmod0vs.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
11 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
12 | lmod0vs.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
13 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 20062 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉)) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
15 | 1, 8, 8, 9, 14 | syl13anc 1370 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
16 | ringgrp 19703 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
17 | 4, 16 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Grp) |
18 | 5, 13, 6 | grplid 18524 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐹)) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
19 | 17, 8, 18 | syl2anc 583 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
20 | 19 | oveq1d 7270 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = (𝑂 · 𝑋)) |
21 | 15, 20 | eqtr3d 2780 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋)) |
22 | 10, 2, 12, 5 | lmodvscl 20055 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
23 | 1, 8, 9, 22 | syl3anc 1369 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
24 | lmod0vs.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
25 | 10, 11, 24 | lmod0vid 20070 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 · 𝑋) ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
26 | 23, 25 | syldan 590 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
27 | 21, 26 | mpbid 231 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 0 = (𝑂 · 𝑋)) |
28 | 27 | eqcomd 2744 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 Grpcgrp 18492 Ringcrg 19698 LModclmod 20038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-ring 19700 df-lmod 20040 |
This theorem is referenced by: lmodvs0 20072 lmodvsmmulgdi 20073 lcomfsupp 20078 lmodvneg1 20081 mptscmfsupp0 20103 lvecvs0or 20285 lssvs0or 20287 lspsneleq 20292 lspdisj 20302 lspfixed 20305 lspexch 20306 lspsolvlem 20319 lspsolv 20320 uvcresum 20910 frlmsslsp 20913 frlmup1 20915 frlmup2 20916 ascl0 20998 mplcoe1 21148 mplbas2 21153 ply10s0 21337 ply1scl0 21371 gsummoncoe1 21385 pmatcollpwscmatlem1 21846 idpm2idmp 21858 mp2pm2mplem4 21866 pm2mpmhmlem1 21875 monmat2matmon 21881 cpmidpmatlem3 21929 clm0vs 24164 plypf1 25278 lmodslmd 31359 lbsdiflsp0 31609 fedgmullem2 31613 lshpkrlem1 37051 ldual0vs 37101 lclkrlem1 39447 lcd0vs 39556 baerlem3lem1 39648 baerlem5blem1 39650 hdmap14lem2a 39808 hdmap14lem4a 39812 hdmap14lem6 39814 hgmapval0 39833 prjspersym 40367 prjspreln0 40369 prjspner1 40384 lmod0rng 45314 scmsuppss 45596 lmodvsmdi 45606 ply1mulgsumlem4 45618 lincval1 45648 lincvalsc0 45650 linc0scn0 45652 linc1 45654 ldepsprlem 45701 |
Copyright terms: Public domain | W3C validator |