| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmod0vs | Structured version Visualization version GIF version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30992 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmod0vs.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmod0vs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmod0vs.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmod0vs.o | ⊢ 𝑂 = (0g‘𝐹) |
| lmod0vs.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| lmod0vs | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
| 2 | lmod0vs.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | lmodring 20803 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Ring) |
| 5 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | lmod0vs.o | . . . . . . 7 ⊢ 𝑂 = (0g‘𝐹) | |
| 7 | 5, 6 | ring0cl 20187 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝑂 ∈ (Base‘𝐹)) |
| 8 | 4, 7 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑂 ∈ (Base‘𝐹)) |
| 9 | simpr 484 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 10 | lmod0vs.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | eqid 2733 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 12 | lmod0vs.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 13 | eqid 2733 | . . . . . 6 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 20821 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉)) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
| 15 | 1, 8, 8, 9, 14 | syl13anc 1374 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
| 16 | ringgrp 20158 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 17 | 4, 16 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Grp) |
| 18 | 5, 13, 6 | grplid 18882 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐹)) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
| 19 | 17, 8, 18 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
| 20 | 19 | oveq1d 7367 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = (𝑂 · 𝑋)) |
| 21 | 15, 20 | eqtr3d 2770 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋)) |
| 22 | 10, 2, 12, 5 | lmodvscl 20813 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
| 23 | 1, 8, 9, 22 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
| 24 | lmod0vs.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 25 | 10, 11, 24 | lmod0vid 20829 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 · 𝑋) ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
| 26 | 23, 25 | syldan 591 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
| 27 | 21, 26 | mpbid 232 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 0 = (𝑂 · 𝑋)) |
| 28 | 27 | eqcomd 2739 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 Scalarcsca 17166 ·𝑠 cvsca 17167 0gc0g 17345 Grpcgrp 18848 Ringcrg 20153 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7309 df-ov 7355 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-ring 20155 df-lmod 20797 |
| This theorem is referenced by: lmodvs0 20831 lmodvsmmulgdi 20832 lcomfsupp 20837 lmodvneg1 20840 mptscmfsupp0 20862 lvecvs0or 21047 lssvs0or 21049 lspsneleq 21054 lspdisj 21064 lspfixed 21067 lspexch 21068 lspsolvlem 21081 lspsolv 21082 uvcresum 21732 frlmsslsp 21735 frlmup1 21737 frlmup2 21738 ascl0 21823 mplcoe1 21973 mplbas2 21978 ply10s0 22171 ply1scl0OLD 22206 gsummoncoe1 22224 evls1fpws 22285 pmatcollpwscmatlem1 22705 idpm2idmp 22717 mp2pm2mplem4 22725 pm2mpmhmlem1 22734 monmat2matmon 22740 cpmidpmatlem3 22788 clm0vs 25023 plypf1 26145 lmodslmd 33180 r1p0 33573 ply1degltdimlem 33656 lbsdiflsp0 33660 fedgmullem2 33664 extdgfialglem2 33727 lshpkrlem1 39230 ldual0vs 39280 lclkrlem1 41626 lcd0vs 41735 baerlem3lem1 41827 baerlem5blem1 41829 hdmap14lem2a 41987 hdmap14lem4a 41991 hdmap14lem6 41993 hgmapval0 42012 selvvvval 42704 prjspersym 42726 prjspreln0 42728 prjspner1 42745 lmod0rng 48354 scmsuppss 48496 lmodvsmdi 48504 ply1mulgsumlem4 48515 lincval1 48545 lincvalsc0 48547 linc0scn0 48549 linc1 48551 ldepsprlem 48598 |
| Copyright terms: Public domain | W3C validator |