MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vs Structured version   Visualization version   GIF version

Theorem lmod0vs 20454
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30126 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod0vs.v 𝑉 = (Base‘𝑊)
lmod0vs.f 𝐹 = (Scalar‘𝑊)
lmod0vs.s · = ( ·𝑠𝑊)
lmod0vs.o 𝑂 = (0g𝐹)
lmod0vs.z 0 = (0g𝑊)
Assertion
Ref Expression
lmod0vs ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )

Proof of Theorem lmod0vs
StepHypRef Expression
1 simpl 483 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
2 lmod0vs.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
32lmodring 20428 . . . . . . 7 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
43adantr 481 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 ∈ Ring)
5 eqid 2731 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
6 lmod0vs.o . . . . . . 7 𝑂 = (0g𝐹)
75, 6ring0cl 20041 . . . . . 6 (𝐹 ∈ Ring → 𝑂 ∈ (Base‘𝐹))
84, 7syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑂 ∈ (Base‘𝐹))
9 simpr 485 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋𝑉)
10 lmod0vs.v . . . . . 6 𝑉 = (Base‘𝑊)
11 eqid 2731 . . . . . 6 (+g𝑊) = (+g𝑊)
12 lmod0vs.s . . . . . 6 · = ( ·𝑠𝑊)
13 eqid 2731 . . . . . 6 (+g𝐹) = (+g𝐹)
1410, 11, 2, 12, 5, 13lmodvsdir 20445 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋𝑉)) → ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)))
151, 8, 8, 9, 14syl13anc 1372 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)))
16 ringgrp 20019 . . . . . . 7 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
174, 16syl 17 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 ∈ Grp)
185, 13, 6grplid 18827 . . . . . 6 ((𝐹 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐹)) → (𝑂(+g𝐹)𝑂) = 𝑂)
1917, 8, 18syl2anc 584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂(+g𝐹)𝑂) = 𝑂)
2019oveq1d 7408 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂(+g𝐹)𝑂) · 𝑋) = (𝑂 · 𝑋))
2115, 20eqtr3d 2773 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋))
2210, 2, 12, 5lmodvscl 20438 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋𝑉) → (𝑂 · 𝑋) ∈ 𝑉)
231, 8, 9, 22syl3anc 1371 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) ∈ 𝑉)
24 lmod0vs.z . . . . 5 0 = (0g𝑊)
2510, 11, 24lmod0vid 20453 . . . 4 ((𝑊 ∈ LMod ∧ (𝑂 · 𝑋) ∈ 𝑉) → (((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋)))
2623, 25syldan 591 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋)))
2721, 26mpbid 231 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 0 = (𝑂 · 𝑋))
2827eqcomd 2737 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cfv 6532  (class class class)co 7393  Basecbs 17126  +gcplusg 17179  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17367  Grpcgrp 18794  Ringcrg 20014  LModclmod 20420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6484  df-fun 6534  df-fv 6540  df-riota 7349  df-ov 7396  df-0g 17369  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-grp 18797  df-ring 20016  df-lmod 20422
This theorem is referenced by:  lmodvs0  20455  lmodvsmmulgdi  20456  lcomfsupp  20461  lmodvneg1  20464  mptscmfsupp0  20486  lvecvs0or  20670  lssvs0or  20672  lspsneleq  20677  lspdisj  20687  lspfixed  20690  lspexch  20691  lspsolvlem  20704  lspsolv  20705  uvcresum  21281  frlmsslsp  21284  frlmup1  21286  frlmup2  21287  ascl0  21369  mplcoe1  21520  mplbas2  21525  ply10s0  21709  ply1scl0  21743  gsummoncoe1  21757  pmatcollpwscmatlem1  22220  idpm2idmp  22232  mp2pm2mplem4  22240  pm2mpmhmlem1  22249  monmat2matmon  22255  cpmidpmatlem3  22303  clm0vs  24540  plypf1  25655  lmodslmd  32220  evls1fpws  32487  ply1degltdimlem  32543  lbsdiflsp0  32547  fedgmullem2  32551  lshpkrlem1  37783  ldual0vs  37833  lclkrlem1  40180  lcd0vs  40289  baerlem3lem1  40381  baerlem5blem1  40383  hdmap14lem2a  40541  hdmap14lem4a  40545  hdmap14lem6  40547  hgmapval0  40566  prjspersym  41129  prjspreln0  41131  prjspner1  41148  lmod0rng  46412  scmsuppss  46694  lmodvsmdi  46704  ply1mulgsumlem4  46716  lincval1  46746  lincvalsc0  46748  linc0scn0  46750  linc1  46752  ldepsprlem  46799
  Copyright terms: Public domain W3C validator