MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vs Structured version   Visualization version   GIF version

Theorem lmod0vs 20071
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 29273 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod0vs.v 𝑉 = (Base‘𝑊)
lmod0vs.f 𝐹 = (Scalar‘𝑊)
lmod0vs.s · = ( ·𝑠𝑊)
lmod0vs.o 𝑂 = (0g𝐹)
lmod0vs.z 0 = (0g𝑊)
Assertion
Ref Expression
lmod0vs ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )

Proof of Theorem lmod0vs
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
2 lmod0vs.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
32lmodring 20046 . . . . . . 7 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
43adantr 480 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 ∈ Ring)
5 eqid 2738 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
6 lmod0vs.o . . . . . . 7 𝑂 = (0g𝐹)
75, 6ring0cl 19723 . . . . . 6 (𝐹 ∈ Ring → 𝑂 ∈ (Base‘𝐹))
84, 7syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑂 ∈ (Base‘𝐹))
9 simpr 484 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋𝑉)
10 lmod0vs.v . . . . . 6 𝑉 = (Base‘𝑊)
11 eqid 2738 . . . . . 6 (+g𝑊) = (+g𝑊)
12 lmod0vs.s . . . . . 6 · = ( ·𝑠𝑊)
13 eqid 2738 . . . . . 6 (+g𝐹) = (+g𝐹)
1410, 11, 2, 12, 5, 13lmodvsdir 20062 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋𝑉)) → ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)))
151, 8, 8, 9, 14syl13anc 1370 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)))
16 ringgrp 19703 . . . . . . 7 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
174, 16syl 17 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 ∈ Grp)
185, 13, 6grplid 18524 . . . . . 6 ((𝐹 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐹)) → (𝑂(+g𝐹)𝑂) = 𝑂)
1917, 8, 18syl2anc 583 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂(+g𝐹)𝑂) = 𝑂)
2019oveq1d 7270 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂(+g𝐹)𝑂) · 𝑋) = (𝑂 · 𝑋))
2115, 20eqtr3d 2780 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋))
2210, 2, 12, 5lmodvscl 20055 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋𝑉) → (𝑂 · 𝑋) ∈ 𝑉)
231, 8, 9, 22syl3anc 1369 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) ∈ 𝑉)
24 lmod0vs.z . . . . 5 0 = (0g𝑊)
2510, 11, 24lmod0vid 20070 . . . 4 ((𝑊 ∈ LMod ∧ (𝑂 · 𝑋) ∈ 𝑉) → (((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋)))
2623, 25syldan 590 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋)))
2721, 26mpbid 231 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 0 = (𝑂 · 𝑋))
2827eqcomd 2744 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  Grpcgrp 18492  Ringcrg 19698  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-riota 7212  df-ov 7258  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ring 19700  df-lmod 20040
This theorem is referenced by:  lmodvs0  20072  lmodvsmmulgdi  20073  lcomfsupp  20078  lmodvneg1  20081  mptscmfsupp0  20103  lvecvs0or  20285  lssvs0or  20287  lspsneleq  20292  lspdisj  20302  lspfixed  20305  lspexch  20306  lspsolvlem  20319  lspsolv  20320  uvcresum  20910  frlmsslsp  20913  frlmup1  20915  frlmup2  20916  ascl0  20998  mplcoe1  21148  mplbas2  21153  ply10s0  21337  ply1scl0  21371  gsummoncoe1  21385  pmatcollpwscmatlem1  21846  idpm2idmp  21858  mp2pm2mplem4  21866  pm2mpmhmlem1  21875  monmat2matmon  21881  cpmidpmatlem3  21929  clm0vs  24164  plypf1  25278  lmodslmd  31359  lbsdiflsp0  31609  fedgmullem2  31613  lshpkrlem1  37051  ldual0vs  37101  lclkrlem1  39447  lcd0vs  39556  baerlem3lem1  39648  baerlem5blem1  39650  hdmap14lem2a  39808  hdmap14lem4a  39812  hdmap14lem6  39814  hgmapval0  39833  prjspersym  40367  prjspreln0  40369  prjspner1  40384  lmod0rng  45314  scmsuppss  45596  lmodvsmdi  45606  ply1mulgsumlem4  45618  lincval1  45648  lincvalsc0  45650  linc0scn0  45652  linc1  45654  ldepsprlem  45701
  Copyright terms: Public domain W3C validator