| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmod0vs | Structured version Visualization version GIF version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30972 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmod0vs.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmod0vs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmod0vs.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmod0vs.o | ⊢ 𝑂 = (0g‘𝐹) |
| lmod0vs.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| lmod0vs | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
| 2 | lmod0vs.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | lmodring 20789 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Ring) |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | lmod0vs.o | . . . . . . 7 ⊢ 𝑂 = (0g‘𝐹) | |
| 7 | 5, 6 | ring0cl 20170 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝑂 ∈ (Base‘𝐹)) |
| 8 | 4, 7 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑂 ∈ (Base‘𝐹)) |
| 9 | simpr 484 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 10 | lmod0vs.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 12 | lmod0vs.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 13 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 20807 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉)) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
| 15 | 1, 8, 8, 9, 14 | syl13anc 1374 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
| 16 | ringgrp 20141 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 17 | 4, 16 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Grp) |
| 18 | 5, 13, 6 | grplid 18864 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐹)) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
| 19 | 17, 8, 18 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
| 20 | 19 | oveq1d 7368 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = (𝑂 · 𝑋)) |
| 21 | 15, 20 | eqtr3d 2766 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋)) |
| 22 | 10, 2, 12, 5 | lmodvscl 20799 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
| 23 | 1, 8, 9, 22 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
| 24 | lmod0vs.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 25 | 10, 11, 24 | lmod0vid 20815 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 · 𝑋) ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
| 26 | 23, 25 | syldan 591 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
| 27 | 21, 26 | mpbid 232 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 0 = (𝑂 · 𝑋)) |
| 28 | 27 | eqcomd 2735 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Scalarcsca 17182 ·𝑠 cvsca 17183 0gc0g 17361 Grpcgrp 18830 Ringcrg 20136 LModclmod 20781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-ring 20138 df-lmod 20783 |
| This theorem is referenced by: lmodvs0 20817 lmodvsmmulgdi 20818 lcomfsupp 20823 lmodvneg1 20826 mptscmfsupp0 20848 lvecvs0or 21033 lssvs0or 21035 lspsneleq 21040 lspdisj 21050 lspfixed 21053 lspexch 21054 lspsolvlem 21067 lspsolv 21068 uvcresum 21718 frlmsslsp 21721 frlmup1 21723 frlmup2 21724 ascl0 21809 mplcoe1 21960 mplbas2 21965 ply10s0 22158 ply1scl0OLD 22193 gsummoncoe1 22211 evls1fpws 22272 pmatcollpwscmatlem1 22692 idpm2idmp 22704 mp2pm2mplem4 22712 pm2mpmhmlem1 22721 monmat2matmon 22727 cpmidpmatlem3 22775 clm0vs 25011 plypf1 26133 lmodslmd 33159 r1p0 33550 ply1degltdimlem 33597 lbsdiflsp0 33601 fedgmullem2 33605 lshpkrlem1 39091 ldual0vs 39141 lclkrlem1 41488 lcd0vs 41597 baerlem3lem1 41689 baerlem5blem1 41691 hdmap14lem2a 41849 hdmap14lem4a 41853 hdmap14lem6 41855 hgmapval0 41874 selvvvval 42561 prjspersym 42583 prjspreln0 42585 prjspner1 42602 lmod0rng 48217 scmsuppss 48359 lmodvsmdi 48367 ply1mulgsumlem4 48378 lincval1 48408 lincvalsc0 48410 linc0scn0 48412 linc1 48414 ldepsprlem 48461 |
| Copyright terms: Public domain | W3C validator |