![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmod0vs | Structured version Visualization version GIF version |
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30263 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmod0vs.v | β’ π = (Baseβπ) |
lmod0vs.f | β’ πΉ = (Scalarβπ) |
lmod0vs.s | β’ Β· = ( Β·π βπ) |
lmod0vs.o | β’ π = (0gβπΉ) |
lmod0vs.z | β’ 0 = (0gβπ) |
Ref | Expression |
---|---|
lmod0vs | β’ ((π β LMod β§ π β π) β (π Β· π) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . . . 5 β’ ((π β LMod β§ π β π) β π β LMod) | |
2 | lmod0vs.f | . . . . . . . 8 β’ πΉ = (Scalarβπ) | |
3 | 2 | lmodring 20479 | . . . . . . 7 β’ (π β LMod β πΉ β Ring) |
4 | 3 | adantr 482 | . . . . . 6 β’ ((π β LMod β§ π β π) β πΉ β Ring) |
5 | eqid 2733 | . . . . . . 7 β’ (BaseβπΉ) = (BaseβπΉ) | |
6 | lmod0vs.o | . . . . . . 7 β’ π = (0gβπΉ) | |
7 | 5, 6 | ring0cl 20084 | . . . . . 6 β’ (πΉ β Ring β π β (BaseβπΉ)) |
8 | 4, 7 | syl 17 | . . . . 5 β’ ((π β LMod β§ π β π) β π β (BaseβπΉ)) |
9 | simpr 486 | . . . . 5 β’ ((π β LMod β§ π β π) β π β π) | |
10 | lmod0vs.v | . . . . . 6 β’ π = (Baseβπ) | |
11 | eqid 2733 | . . . . . 6 β’ (+gβπ) = (+gβπ) | |
12 | lmod0vs.s | . . . . . 6 β’ Β· = ( Β·π βπ) | |
13 | eqid 2733 | . . . . . 6 β’ (+gβπΉ) = (+gβπΉ) | |
14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 20496 | . . . . 5 β’ ((π β LMod β§ (π β (BaseβπΉ) β§ π β (BaseβπΉ) β§ π β π)) β ((π(+gβπΉ)π) Β· π) = ((π Β· π)(+gβπ)(π Β· π))) |
15 | 1, 8, 8, 9, 14 | syl13anc 1373 | . . . 4 β’ ((π β LMod β§ π β π) β ((π(+gβπΉ)π) Β· π) = ((π Β· π)(+gβπ)(π Β· π))) |
16 | ringgrp 20061 | . . . . . . 7 β’ (πΉ β Ring β πΉ β Grp) | |
17 | 4, 16 | syl 17 | . . . . . 6 β’ ((π β LMod β§ π β π) β πΉ β Grp) |
18 | 5, 13, 6 | grplid 18852 | . . . . . 6 β’ ((πΉ β Grp β§ π β (BaseβπΉ)) β (π(+gβπΉ)π) = π) |
19 | 17, 8, 18 | syl2anc 585 | . . . . 5 β’ ((π β LMod β§ π β π) β (π(+gβπΉ)π) = π) |
20 | 19 | oveq1d 7424 | . . . 4 β’ ((π β LMod β§ π β π) β ((π(+gβπΉ)π) Β· π) = (π Β· π)) |
21 | 15, 20 | eqtr3d 2775 | . . 3 β’ ((π β LMod β§ π β π) β ((π Β· π)(+gβπ)(π Β· π)) = (π Β· π)) |
22 | 10, 2, 12, 5 | lmodvscl 20489 | . . . . 5 β’ ((π β LMod β§ π β (BaseβπΉ) β§ π β π) β (π Β· π) β π) |
23 | 1, 8, 9, 22 | syl3anc 1372 | . . . 4 β’ ((π β LMod β§ π β π) β (π Β· π) β π) |
24 | lmod0vs.z | . . . . 5 β’ 0 = (0gβπ) | |
25 | 10, 11, 24 | lmod0vid 20504 | . . . 4 β’ ((π β LMod β§ (π Β· π) β π) β (((π Β· π)(+gβπ)(π Β· π)) = (π Β· π) β 0 = (π Β· π))) |
26 | 23, 25 | syldan 592 | . . 3 β’ ((π β LMod β§ π β π) β (((π Β· π)(+gβπ)(π Β· π)) = (π Β· π) β 0 = (π Β· π))) |
27 | 21, 26 | mpbid 231 | . 2 β’ ((π β LMod β§ π β π) β 0 = (π Β· π)) |
28 | 27 | eqcomd 2739 | 1 β’ ((π β LMod β§ π β π) β (π Β· π) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 Scalarcsca 17200 Β·π cvsca 17201 0gc0g 17385 Grpcgrp 18819 Ringcrg 20056 LModclmod 20471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-riota 7365 df-ov 7412 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-ring 20058 df-lmod 20473 |
This theorem is referenced by: lmodvs0 20506 lmodvsmmulgdi 20507 lcomfsupp 20512 lmodvneg1 20515 mptscmfsupp0 20537 lvecvs0or 20721 lssvs0or 20723 lspsneleq 20728 lspdisj 20738 lspfixed 20741 lspexch 20742 lspsolvlem 20755 lspsolv 20756 uvcresum 21348 frlmsslsp 21351 frlmup1 21353 frlmup2 21354 ascl0 21438 mplcoe1 21592 mplbas2 21597 ply10s0 21778 ply1scl0OLD 21813 gsummoncoe1 21828 pmatcollpwscmatlem1 22291 idpm2idmp 22303 mp2pm2mplem4 22311 pm2mpmhmlem1 22320 monmat2matmon 22326 cpmidpmatlem3 22374 clm0vs 24611 plypf1 25726 lmodslmd 32349 evls1fpws 32646 ply1degltdimlem 32707 lbsdiflsp0 32711 fedgmullem2 32715 lshpkrlem1 37980 ldual0vs 38030 lclkrlem1 40377 lcd0vs 40486 baerlem3lem1 40578 baerlem5blem1 40580 hdmap14lem2a 40738 hdmap14lem4a 40742 hdmap14lem6 40744 hgmapval0 40763 selvvvval 41157 prjspersym 41349 prjspreln0 41351 prjspner1 41368 lmod0rng 46642 scmsuppss 47048 lmodvsmdi 47058 ply1mulgsumlem4 47070 lincval1 47100 lincvalsc0 47102 linc0scn0 47104 linc1 47106 ldepsprlem 47153 |
Copyright terms: Public domain | W3C validator |