![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmod0vs | Structured version Visualization version GIF version |
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30250 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmod0vs.v | β’ π = (Baseβπ) |
lmod0vs.f | β’ πΉ = (Scalarβπ) |
lmod0vs.s | β’ Β· = ( Β·π βπ) |
lmod0vs.o | β’ π = (0gβπΉ) |
lmod0vs.z | β’ 0 = (0gβπ) |
Ref | Expression |
---|---|
lmod0vs | β’ ((π β LMod β§ π β π) β (π Β· π) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . 5 β’ ((π β LMod β§ π β π) β π β LMod) | |
2 | lmod0vs.f | . . . . . . . 8 β’ πΉ = (Scalarβπ) | |
3 | 2 | lmodring 20471 | . . . . . . 7 β’ (π β LMod β πΉ β Ring) |
4 | 3 | adantr 481 | . . . . . 6 β’ ((π β LMod β§ π β π) β πΉ β Ring) |
5 | eqid 2732 | . . . . . . 7 β’ (BaseβπΉ) = (BaseβπΉ) | |
6 | lmod0vs.o | . . . . . . 7 β’ π = (0gβπΉ) | |
7 | 5, 6 | ring0cl 20077 | . . . . . 6 β’ (πΉ β Ring β π β (BaseβπΉ)) |
8 | 4, 7 | syl 17 | . . . . 5 β’ ((π β LMod β§ π β π) β π β (BaseβπΉ)) |
9 | simpr 485 | . . . . 5 β’ ((π β LMod β§ π β π) β π β π) | |
10 | lmod0vs.v | . . . . . 6 β’ π = (Baseβπ) | |
11 | eqid 2732 | . . . . . 6 β’ (+gβπ) = (+gβπ) | |
12 | lmod0vs.s | . . . . . 6 β’ Β· = ( Β·π βπ) | |
13 | eqid 2732 | . . . . . 6 β’ (+gβπΉ) = (+gβπΉ) | |
14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 20488 | . . . . 5 β’ ((π β LMod β§ (π β (BaseβπΉ) β§ π β (BaseβπΉ) β§ π β π)) β ((π(+gβπΉ)π) Β· π) = ((π Β· π)(+gβπ)(π Β· π))) |
15 | 1, 8, 8, 9, 14 | syl13anc 1372 | . . . 4 β’ ((π β LMod β§ π β π) β ((π(+gβπΉ)π) Β· π) = ((π Β· π)(+gβπ)(π Β· π))) |
16 | ringgrp 20054 | . . . . . . 7 β’ (πΉ β Ring β πΉ β Grp) | |
17 | 4, 16 | syl 17 | . . . . . 6 β’ ((π β LMod β§ π β π) β πΉ β Grp) |
18 | 5, 13, 6 | grplid 18848 | . . . . . 6 β’ ((πΉ β Grp β§ π β (BaseβπΉ)) β (π(+gβπΉ)π) = π) |
19 | 17, 8, 18 | syl2anc 584 | . . . . 5 β’ ((π β LMod β§ π β π) β (π(+gβπΉ)π) = π) |
20 | 19 | oveq1d 7420 | . . . 4 β’ ((π β LMod β§ π β π) β ((π(+gβπΉ)π) Β· π) = (π Β· π)) |
21 | 15, 20 | eqtr3d 2774 | . . 3 β’ ((π β LMod β§ π β π) β ((π Β· π)(+gβπ)(π Β· π)) = (π Β· π)) |
22 | 10, 2, 12, 5 | lmodvscl 20481 | . . . . 5 β’ ((π β LMod β§ π β (BaseβπΉ) β§ π β π) β (π Β· π) β π) |
23 | 1, 8, 9, 22 | syl3anc 1371 | . . . 4 β’ ((π β LMod β§ π β π) β (π Β· π) β π) |
24 | lmod0vs.z | . . . . 5 β’ 0 = (0gβπ) | |
25 | 10, 11, 24 | lmod0vid 20496 | . . . 4 β’ ((π β LMod β§ (π Β· π) β π) β (((π Β· π)(+gβπ)(π Β· π)) = (π Β· π) β 0 = (π Β· π))) |
26 | 23, 25 | syldan 591 | . . 3 β’ ((π β LMod β§ π β π) β (((π Β· π)(+gβπ)(π Β· π)) = (π Β· π) β 0 = (π Β· π))) |
27 | 21, 26 | mpbid 231 | . 2 β’ ((π β LMod β§ π β π) β 0 = (π Β· π)) |
28 | 27 | eqcomd 2738 | 1 β’ ((π β LMod β§ π β π) β (π Β· π) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 Scalarcsca 17196 Β·π cvsca 17197 0gc0g 17381 Grpcgrp 18815 Ringcrg 20049 LModclmod 20463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-riota 7361 df-ov 7408 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-ring 20051 df-lmod 20465 |
This theorem is referenced by: lmodvs0 20498 lmodvsmmulgdi 20499 lcomfsupp 20504 lmodvneg1 20507 mptscmfsupp0 20529 lvecvs0or 20713 lssvs0or 20715 lspsneleq 20720 lspdisj 20730 lspfixed 20733 lspexch 20734 lspsolvlem 20747 lspsolv 20748 uvcresum 21339 frlmsslsp 21342 frlmup1 21344 frlmup2 21345 ascl0 21429 mplcoe1 21583 mplbas2 21588 ply10s0 21769 ply1scl0OLD 21804 gsummoncoe1 21819 pmatcollpwscmatlem1 22282 idpm2idmp 22294 mp2pm2mplem4 22302 pm2mpmhmlem1 22311 monmat2matmon 22317 cpmidpmatlem3 22365 clm0vs 24602 plypf1 25717 lmodslmd 32336 evls1fpws 32634 ply1degltdimlem 32695 lbsdiflsp0 32699 fedgmullem2 32703 lshpkrlem1 37968 ldual0vs 38018 lclkrlem1 40365 lcd0vs 40474 baerlem3lem1 40566 baerlem5blem1 40568 hdmap14lem2a 40726 hdmap14lem4a 40730 hdmap14lem6 40732 hgmapval0 40751 selvvvval 41154 prjspersym 41345 prjspreln0 41347 prjspner1 41364 lmod0rng 46628 scmsuppss 47001 lmodvsmdi 47011 ply1mulgsumlem4 47023 lincval1 47053 lincvalsc0 47055 linc0scn0 47057 linc1 47059 ldepsprlem 47106 |
Copyright terms: Public domain | W3C validator |