MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vs Structured version   Visualization version   GIF version

Theorem lmod0vs 20915
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 31042 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod0vs.v 𝑉 = (Base‘𝑊)
lmod0vs.f 𝐹 = (Scalar‘𝑊)
lmod0vs.s · = ( ·𝑠𝑊)
lmod0vs.o 𝑂 = (0g𝐹)
lmod0vs.z 0 = (0g𝑊)
Assertion
Ref Expression
lmod0vs ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )

Proof of Theorem lmod0vs
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
2 lmod0vs.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
32lmodring 20888 . . . . . . 7 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
43adantr 480 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 ∈ Ring)
5 eqid 2740 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
6 lmod0vs.o . . . . . . 7 𝑂 = (0g𝐹)
75, 6ring0cl 20290 . . . . . 6 (𝐹 ∈ Ring → 𝑂 ∈ (Base‘𝐹))
84, 7syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑂 ∈ (Base‘𝐹))
9 simpr 484 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋𝑉)
10 lmod0vs.v . . . . . 6 𝑉 = (Base‘𝑊)
11 eqid 2740 . . . . . 6 (+g𝑊) = (+g𝑊)
12 lmod0vs.s . . . . . 6 · = ( ·𝑠𝑊)
13 eqid 2740 . . . . . 6 (+g𝐹) = (+g𝐹)
1410, 11, 2, 12, 5, 13lmodvsdir 20906 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋𝑉)) → ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)))
151, 8, 8, 9, 14syl13anc 1372 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)))
16 ringgrp 20265 . . . . . . 7 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
174, 16syl 17 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 ∈ Grp)
185, 13, 6grplid 19007 . . . . . 6 ((𝐹 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐹)) → (𝑂(+g𝐹)𝑂) = 𝑂)
1917, 8, 18syl2anc 583 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂(+g𝐹)𝑂) = 𝑂)
2019oveq1d 7463 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂(+g𝐹)𝑂) · 𝑋) = (𝑂 · 𝑋))
2115, 20eqtr3d 2782 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋))
2210, 2, 12, 5lmodvscl 20898 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋𝑉) → (𝑂 · 𝑋) ∈ 𝑉)
231, 8, 9, 22syl3anc 1371 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) ∈ 𝑉)
24 lmod0vs.z . . . . 5 0 = (0g𝑊)
2510, 11, 24lmod0vid 20914 . . . 4 ((𝑊 ∈ LMod ∧ (𝑂 · 𝑋) ∈ 𝑉) → (((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋)))
2623, 25syldan 590 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋)))
2721, 26mpbid 232 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 0 = (𝑂 · 𝑋))
2827eqcomd 2746 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  Grpcgrp 18973  Ringcrg 20260  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-riota 7404  df-ov 7451  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ring 20262  df-lmod 20882
This theorem is referenced by:  lmodvs0  20916  lmodvsmmulgdi  20917  lcomfsupp  20922  lmodvneg1  20925  mptscmfsupp0  20947  lvecvs0or  21133  lssvs0or  21135  lspsneleq  21140  lspdisj  21150  lspfixed  21153  lspexch  21154  lspsolvlem  21167  lspsolv  21168  uvcresum  21836  frlmsslsp  21839  frlmup1  21841  frlmup2  21842  ascl0  21927  mplcoe1  22078  mplbas2  22083  ply10s0  22280  ply1scl0OLD  22315  gsummoncoe1  22333  evls1fpws  22394  pmatcollpwscmatlem1  22816  idpm2idmp  22828  mp2pm2mplem4  22836  pm2mpmhmlem1  22845  monmat2matmon  22851  cpmidpmatlem3  22899  clm0vs  25147  plypf1  26271  lmodslmd  33183  r1p0  33591  ply1degltdimlem  33635  lbsdiflsp0  33639  fedgmullem2  33643  lshpkrlem1  39066  ldual0vs  39116  lclkrlem1  41463  lcd0vs  41572  baerlem3lem1  41664  baerlem5blem1  41666  hdmap14lem2a  41824  hdmap14lem4a  41828  hdmap14lem6  41830  hgmapval0  41849  selvvvval  42540  prjspersym  42562  prjspreln0  42564  prjspner1  42581  lmod0rng  47952  scmsuppss  48097  lmodvsmdi  48107  ply1mulgsumlem4  48118  lincval1  48148  lincvalsc0  48150  linc0scn0  48152  linc1  48154  ldepsprlem  48201
  Copyright terms: Public domain W3C validator