| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmod0vs | Structured version Visualization version GIF version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30946 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmod0vs.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmod0vs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmod0vs.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmod0vs.o | ⊢ 𝑂 = (0g‘𝐹) |
| lmod0vs.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| lmod0vs | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
| 2 | lmod0vs.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | lmodring 20781 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Ring) |
| 5 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | lmod0vs.o | . . . . . . 7 ⊢ 𝑂 = (0g‘𝐹) | |
| 7 | 5, 6 | ring0cl 20183 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝑂 ∈ (Base‘𝐹)) |
| 8 | 4, 7 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑂 ∈ (Base‘𝐹)) |
| 9 | simpr 484 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 10 | lmod0vs.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | eqid 2730 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 12 | lmod0vs.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 13 | eqid 2730 | . . . . . 6 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 20799 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉)) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
| 15 | 1, 8, 8, 9, 14 | syl13anc 1374 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
| 16 | ringgrp 20154 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 17 | 4, 16 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Grp) |
| 18 | 5, 13, 6 | grplid 18906 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐹)) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
| 19 | 17, 8, 18 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
| 20 | 19 | oveq1d 7405 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = (𝑂 · 𝑋)) |
| 21 | 15, 20 | eqtr3d 2767 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋)) |
| 22 | 10, 2, 12, 5 | lmodvscl 20791 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
| 23 | 1, 8, 9, 22 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
| 24 | lmod0vs.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 25 | 10, 11, 24 | lmod0vid 20807 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 · 𝑋) ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
| 26 | 23, 25 | syldan 591 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
| 27 | 21, 26 | mpbid 232 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 0 = (𝑂 · 𝑋)) |
| 28 | 27 | eqcomd 2736 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 Grpcgrp 18872 Ringcrg 20149 LModclmod 20773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-ring 20151 df-lmod 20775 |
| This theorem is referenced by: lmodvs0 20809 lmodvsmmulgdi 20810 lcomfsupp 20815 lmodvneg1 20818 mptscmfsupp0 20840 lvecvs0or 21025 lssvs0or 21027 lspsneleq 21032 lspdisj 21042 lspfixed 21045 lspexch 21046 lspsolvlem 21059 lspsolv 21060 uvcresum 21709 frlmsslsp 21712 frlmup1 21714 frlmup2 21715 ascl0 21800 mplcoe1 21951 mplbas2 21956 ply10s0 22149 ply1scl0OLD 22184 gsummoncoe1 22202 evls1fpws 22263 pmatcollpwscmatlem1 22683 idpm2idmp 22695 mp2pm2mplem4 22703 pm2mpmhmlem1 22712 monmat2matmon 22718 cpmidpmatlem3 22766 clm0vs 25002 plypf1 26124 lmodslmd 33164 r1p0 33578 ply1degltdimlem 33625 lbsdiflsp0 33629 fedgmullem2 33633 lshpkrlem1 39110 ldual0vs 39160 lclkrlem1 41507 lcd0vs 41616 baerlem3lem1 41708 baerlem5blem1 41710 hdmap14lem2a 41868 hdmap14lem4a 41872 hdmap14lem6 41874 hgmapval0 41893 selvvvval 42580 prjspersym 42602 prjspreln0 42604 prjspner1 42621 lmod0rng 48221 scmsuppss 48363 lmodvsmdi 48371 ply1mulgsumlem4 48382 lincval1 48412 lincvalsc0 48414 linc0scn0 48416 linc1 48418 ldepsprlem 48465 |
| Copyright terms: Public domain | W3C validator |