MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vs Structured version   Visualization version   GIF version

Theorem lmod0vs 20829
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30988 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod0vs.v 𝑉 = (Base‘𝑊)
lmod0vs.f 𝐹 = (Scalar‘𝑊)
lmod0vs.s · = ( ·𝑠𝑊)
lmod0vs.o 𝑂 = (0g𝐹)
lmod0vs.z 0 = (0g𝑊)
Assertion
Ref Expression
lmod0vs ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )

Proof of Theorem lmod0vs
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
2 lmod0vs.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
32lmodring 20802 . . . . . . 7 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
43adantr 480 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 ∈ Ring)
5 eqid 2731 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
6 lmod0vs.o . . . . . . 7 𝑂 = (0g𝐹)
75, 6ring0cl 20186 . . . . . 6 (𝐹 ∈ Ring → 𝑂 ∈ (Base‘𝐹))
84, 7syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑂 ∈ (Base‘𝐹))
9 simpr 484 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋𝑉)
10 lmod0vs.v . . . . . 6 𝑉 = (Base‘𝑊)
11 eqid 2731 . . . . . 6 (+g𝑊) = (+g𝑊)
12 lmod0vs.s . . . . . 6 · = ( ·𝑠𝑊)
13 eqid 2731 . . . . . 6 (+g𝐹) = (+g𝐹)
1410, 11, 2, 12, 5, 13lmodvsdir 20820 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋𝑉)) → ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)))
151, 8, 8, 9, 14syl13anc 1374 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)))
16 ringgrp 20157 . . . . . . 7 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
174, 16syl 17 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 ∈ Grp)
185, 13, 6grplid 18880 . . . . . 6 ((𝐹 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐹)) → (𝑂(+g𝐹)𝑂) = 𝑂)
1917, 8, 18syl2anc 584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂(+g𝐹)𝑂) = 𝑂)
2019oveq1d 7361 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂(+g𝐹)𝑂) · 𝑋) = (𝑂 · 𝑋))
2115, 20eqtr3d 2768 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋))
2210, 2, 12, 5lmodvscl 20812 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋𝑉) → (𝑂 · 𝑋) ∈ 𝑉)
231, 8, 9, 22syl3anc 1373 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) ∈ 𝑉)
24 lmod0vs.z . . . . 5 0 = (0g𝑊)
2510, 11, 24lmod0vid 20828 . . . 4 ((𝑊 ∈ LMod ∧ (𝑂 · 𝑋) ∈ 𝑉) → (((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋)))
2623, 25syldan 591 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋)))
2721, 26mpbid 232 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 0 = (𝑂 · 𝑋))
2827eqcomd 2737 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  Grpcgrp 18846  Ringcrg 20152  LModclmod 20794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-ring 20154  df-lmod 20796
This theorem is referenced by:  lmodvs0  20830  lmodvsmmulgdi  20831  lcomfsupp  20836  lmodvneg1  20839  mptscmfsupp0  20861  lvecvs0or  21046  lssvs0or  21048  lspsneleq  21053  lspdisj  21063  lspfixed  21066  lspexch  21067  lspsolvlem  21080  lspsolv  21081  uvcresum  21731  frlmsslsp  21734  frlmup1  21736  frlmup2  21737  ascl0  21822  mplcoe1  21973  mplbas2  21978  ply10s0  22171  ply1scl0OLD  22206  gsummoncoe1  22224  evls1fpws  22285  pmatcollpwscmatlem1  22705  idpm2idmp  22717  mp2pm2mplem4  22725  pm2mpmhmlem1  22734  monmat2matmon  22740  cpmidpmatlem3  22788  clm0vs  25023  plypf1  26145  lmodslmd  33171  r1p0  33564  ply1degltdimlem  33633  lbsdiflsp0  33637  fedgmullem2  33641  extdgfialglem2  33704  lshpkrlem1  39155  ldual0vs  39205  lclkrlem1  41551  lcd0vs  41660  baerlem3lem1  41752  baerlem5blem1  41754  hdmap14lem2a  41912  hdmap14lem4a  41916  hdmap14lem6  41918  hgmapval0  41937  selvvvval  42624  prjspersym  42646  prjspreln0  42648  prjspner1  42665  lmod0rng  48266  scmsuppss  48408  lmodvsmdi  48416  ply1mulgsumlem4  48427  lincval1  48457  lincvalsc0  48459  linc0scn0  48461  linc1  48463  ldepsprlem  48510
  Copyright terms: Public domain W3C validator