Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpirlidllpi Structured version   Visualization version   GIF version

Theorem lpirlidllpi 33186
Description: In a principal ideal ring, ideals are principal. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
lpirlidllpi.1 𝐵 = (Base‘𝑅)
lpirlidllpi.2 𝐼 = (LIdeal‘𝑅)
lpirlidllpi.3 𝐾 = (RSpan‘𝑅)
lpirlidllpi.4 (𝜑𝑅 ∈ LPIR)
lpirlidllpi.5 (𝜑𝐽𝐼)
Assertion
Ref Expression
lpirlidllpi (𝜑 → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐽   𝑥,𝐾   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐼(𝑥)

Proof of Theorem lpirlidllpi
StepHypRef Expression
1 lpirlidllpi.4 . . . 4 (𝜑𝑅 ∈ LPIR)
2 eqid 2725 . . . . 5 (LPIdeal‘𝑅) = (LPIdeal‘𝑅)
3 lpirlidllpi.2 . . . . 5 𝐼 = (LIdeal‘𝑅)
42, 3islpir 21235 . . . 4 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅)))
51, 4sylib 217 . . 3 (𝜑 → (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅)))
65simpld 493 . 2 (𝜑𝑅 ∈ Ring)
7 lpirlidllpi.5 . . 3 (𝜑𝐽𝐼)
85simprd 494 . . 3 (𝜑𝐼 = (LPIdeal‘𝑅))
97, 8eleqtrd 2827 . 2 (𝜑𝐽 ∈ (LPIdeal‘𝑅))
10 lpirlidllpi.3 . . . 4 𝐾 = (RSpan‘𝑅)
11 lpirlidllpi.1 . . . 4 𝐵 = (Base‘𝑅)
122, 10, 11islpidl 21232 . . 3 (𝑅 ∈ Ring → (𝐽 ∈ (LPIdeal‘𝑅) ↔ ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥})))
1312biimpa 475 . 2 ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LPIdeal‘𝑅)) → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
146, 9, 13syl2anc 582 1 (𝜑 → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wrex 3059  {csn 4630  cfv 6549  Basecbs 17183  Ringcrg 20185  LIdealclidl 21114  RSpancrsp 21115  LPIdealclpidl 21227  LPIRclpir 21228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6501  df-fun 6551  df-fv 6557  df-lpidl 21229  df-lpir 21230
This theorem is referenced by:  pidufd  33358
  Copyright terms: Public domain W3C validator