Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpirlidllpi Structured version   Visualization version   GIF version

Theorem lpirlidllpi 33382
Description: In a principal ideal ring, ideals are principal. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
lpirlidllpi.1 𝐵 = (Base‘𝑅)
lpirlidllpi.2 𝐼 = (LIdeal‘𝑅)
lpirlidllpi.3 𝐾 = (RSpan‘𝑅)
lpirlidllpi.4 (𝜑𝑅 ∈ LPIR)
lpirlidllpi.5 (𝜑𝐽𝐼)
Assertion
Ref Expression
lpirlidllpi (𝜑 → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐽   𝑥,𝐾   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐼(𝑥)

Proof of Theorem lpirlidllpi
StepHypRef Expression
1 lpirlidllpi.4 . . . 4 (𝜑𝑅 ∈ LPIR)
2 eqid 2735 . . . . 5 (LPIdeal‘𝑅) = (LPIdeal‘𝑅)
3 lpirlidllpi.2 . . . . 5 𝐼 = (LIdeal‘𝑅)
42, 3islpir 21356 . . . 4 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅)))
51, 4sylib 218 . . 3 (𝜑 → (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅)))
65simpld 494 . 2 (𝜑𝑅 ∈ Ring)
7 lpirlidllpi.5 . . 3 (𝜑𝐽𝐼)
85simprd 495 . . 3 (𝜑𝐼 = (LPIdeal‘𝑅))
97, 8eleqtrd 2841 . 2 (𝜑𝐽 ∈ (LPIdeal‘𝑅))
10 lpirlidllpi.3 . . . 4 𝐾 = (RSpan‘𝑅)
11 lpirlidllpi.1 . . . 4 𝐵 = (Base‘𝑅)
122, 10, 11islpidl 21353 . . 3 (𝑅 ∈ Ring → (𝐽 ∈ (LPIdeal‘𝑅) ↔ ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥})))
1312biimpa 476 . 2 ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LPIdeal‘𝑅)) → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
146, 9, 13syl2anc 584 1 (𝜑 → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  {csn 4631  cfv 6563  Basecbs 17245  Ringcrg 20251  LIdealclidl 21234  RSpancrsp 21235  LPIdealclpidl 21348  LPIRclpir 21349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-lpidl 21350  df-lpir 21351
This theorem is referenced by:  pidufd  33551
  Copyright terms: Public domain W3C validator