| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lpirlidllpi | Structured version Visualization version GIF version | ||
| Description: In a principal ideal ring, ideals are principal. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| lpirlidllpi.1 | ⊢ 𝐵 = (Base‘𝑅) |
| lpirlidllpi.2 | ⊢ 𝐼 = (LIdeal‘𝑅) |
| lpirlidllpi.3 | ⊢ 𝐾 = (RSpan‘𝑅) |
| lpirlidllpi.4 | ⊢ (𝜑 → 𝑅 ∈ LPIR) |
| lpirlidllpi.5 | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| lpirlidllpi | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpirlidllpi.4 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ LPIR) | |
| 2 | eqid 2734 | . . . . 5 ⊢ (LPIdeal‘𝑅) = (LPIdeal‘𝑅) | |
| 3 | lpirlidllpi.2 | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 4 | 2, 3 | islpir 21274 | . . . 4 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅))) |
| 5 | 1, 4 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅))) |
| 6 | 5 | simpld 494 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 7 | lpirlidllpi.5 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
| 8 | 5 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐼 = (LPIdeal‘𝑅)) |
| 9 | 7, 8 | eleqtrd 2835 | . 2 ⊢ (𝜑 → 𝐽 ∈ (LPIdeal‘𝑅)) |
| 10 | lpirlidllpi.3 | . . . 4 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 11 | lpirlidllpi.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 12 | 2, 10, 11 | islpidl 21271 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐽 ∈ (LPIdeal‘𝑅) ↔ ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥}))) |
| 13 | 12 | biimpa 476 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LPIdeal‘𝑅)) → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
| 14 | 6, 9, 13 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {csn 4599 ‘cfv 6527 Basecbs 17213 Ringcrg 20178 LIdealclidl 21152 RSpancrsp 21153 LPIdealclpidl 21266 LPIRclpir 21267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-iota 6480 df-fun 6529 df-fv 6535 df-lpidl 21268 df-lpir 21269 |
| This theorem is referenced by: pidufd 33476 |
| Copyright terms: Public domain | W3C validator |