Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpirlidllpi Structured version   Visualization version   GIF version

Theorem lpirlidllpi 33339
Description: In a principal ideal ring, ideals are principal. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
lpirlidllpi.1 𝐵 = (Base‘𝑅)
lpirlidllpi.2 𝐼 = (LIdeal‘𝑅)
lpirlidllpi.3 𝐾 = (RSpan‘𝑅)
lpirlidllpi.4 (𝜑𝑅 ∈ LPIR)
lpirlidllpi.5 (𝜑𝐽𝐼)
Assertion
Ref Expression
lpirlidllpi (𝜑 → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐽   𝑥,𝐾   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐼(𝑥)

Proof of Theorem lpirlidllpi
StepHypRef Expression
1 lpirlidllpi.4 . . . 4 (𝜑𝑅 ∈ LPIR)
2 eqid 2731 . . . . 5 (LPIdeal‘𝑅) = (LPIdeal‘𝑅)
3 lpirlidllpi.2 . . . . 5 𝐼 = (LIdeal‘𝑅)
42, 3islpir 21265 . . . 4 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅)))
51, 4sylib 218 . . 3 (𝜑 → (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅)))
65simpld 494 . 2 (𝜑𝑅 ∈ Ring)
7 lpirlidllpi.5 . . 3 (𝜑𝐽𝐼)
85simprd 495 . . 3 (𝜑𝐼 = (LPIdeal‘𝑅))
97, 8eleqtrd 2833 . 2 (𝜑𝐽 ∈ (LPIdeal‘𝑅))
10 lpirlidllpi.3 . . . 4 𝐾 = (RSpan‘𝑅)
11 lpirlidllpi.1 . . . 4 𝐵 = (Base‘𝑅)
122, 10, 11islpidl 21262 . . 3 (𝑅 ∈ Ring → (𝐽 ∈ (LPIdeal‘𝑅) ↔ ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥})))
1312biimpa 476 . 2 ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LPIdeal‘𝑅)) → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
146, 9, 13syl2anc 584 1 (𝜑 → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  {csn 4573  cfv 6481  Basecbs 17120  Ringcrg 20151  LIdealclidl 21143  RSpancrsp 21144  LPIdealclpidl 21257  LPIRclpir 21258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-lpidl 21259  df-lpir 21260
This theorem is referenced by:  pidufd  33508
  Copyright terms: Public domain W3C validator