Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpirlidllpi Structured version   Visualization version   GIF version

Theorem lpirlidllpi 33394
Description: In a principal ideal ring, ideals are principal. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
lpirlidllpi.1 𝐵 = (Base‘𝑅)
lpirlidllpi.2 𝐼 = (LIdeal‘𝑅)
lpirlidllpi.3 𝐾 = (RSpan‘𝑅)
lpirlidllpi.4 (𝜑𝑅 ∈ LPIR)
lpirlidllpi.5 (𝜑𝐽𝐼)
Assertion
Ref Expression
lpirlidllpi (𝜑 → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐽   𝑥,𝐾   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐼(𝑥)

Proof of Theorem lpirlidllpi
StepHypRef Expression
1 lpirlidllpi.4 . . . 4 (𝜑𝑅 ∈ LPIR)
2 eqid 2736 . . . . 5 (LPIdeal‘𝑅) = (LPIdeal‘𝑅)
3 lpirlidllpi.2 . . . . 5 𝐼 = (LIdeal‘𝑅)
42, 3islpir 21294 . . . 4 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅)))
51, 4sylib 218 . . 3 (𝜑 → (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅)))
65simpld 494 . 2 (𝜑𝑅 ∈ Ring)
7 lpirlidllpi.5 . . 3 (𝜑𝐽𝐼)
85simprd 495 . . 3 (𝜑𝐼 = (LPIdeal‘𝑅))
97, 8eleqtrd 2837 . 2 (𝜑𝐽 ∈ (LPIdeal‘𝑅))
10 lpirlidllpi.3 . . . 4 𝐾 = (RSpan‘𝑅)
11 lpirlidllpi.1 . . . 4 𝐵 = (Base‘𝑅)
122, 10, 11islpidl 21291 . . 3 (𝑅 ∈ Ring → (𝐽 ∈ (LPIdeal‘𝑅) ↔ ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥})))
1312biimpa 476 . 2 ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LPIdeal‘𝑅)) → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
146, 9, 13syl2anc 584 1 (𝜑 → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061  {csn 4606  cfv 6536  Basecbs 17233  Ringcrg 20198  LIdealclidl 21172  RSpancrsp 21173  LPIdealclpidl 21286  LPIRclpir 21287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-lpidl 21288  df-lpir 21289
This theorem is referenced by:  pidufd  33563
  Copyright terms: Public domain W3C validator