Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpirlidllpi Structured version   Visualization version   GIF version

Theorem lpirlidllpi 33403
Description: In a principal ideal ring, ideals are principal. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
lpirlidllpi.1 𝐵 = (Base‘𝑅)
lpirlidllpi.2 𝐼 = (LIdeal‘𝑅)
lpirlidllpi.3 𝐾 = (RSpan‘𝑅)
lpirlidllpi.4 (𝜑𝑅 ∈ LPIR)
lpirlidllpi.5 (𝜑𝐽𝐼)
Assertion
Ref Expression
lpirlidllpi (𝜑 → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐽   𝑥,𝐾   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐼(𝑥)

Proof of Theorem lpirlidllpi
StepHypRef Expression
1 lpirlidllpi.4 . . . 4 (𝜑𝑅 ∈ LPIR)
2 eqid 2736 . . . . 5 (LPIdeal‘𝑅) = (LPIdeal‘𝑅)
3 lpirlidllpi.2 . . . . 5 𝐼 = (LIdeal‘𝑅)
42, 3islpir 21339 . . . 4 (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅)))
51, 4sylib 218 . . 3 (𝜑 → (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅)))
65simpld 494 . 2 (𝜑𝑅 ∈ Ring)
7 lpirlidllpi.5 . . 3 (𝜑𝐽𝐼)
85simprd 495 . . 3 (𝜑𝐼 = (LPIdeal‘𝑅))
97, 8eleqtrd 2842 . 2 (𝜑𝐽 ∈ (LPIdeal‘𝑅))
10 lpirlidllpi.3 . . . 4 𝐾 = (RSpan‘𝑅)
11 lpirlidllpi.1 . . . 4 𝐵 = (Base‘𝑅)
122, 10, 11islpidl 21336 . . 3 (𝑅 ∈ Ring → (𝐽 ∈ (LPIdeal‘𝑅) ↔ ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥})))
1312biimpa 476 . 2 ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LPIdeal‘𝑅)) → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
146, 9, 13syl2anc 584 1 (𝜑 → ∃𝑥𝐵 𝐽 = (𝐾‘{𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3069  {csn 4625  cfv 6560  Basecbs 17248  Ringcrg 20231  LIdealclidl 21217  RSpancrsp 21218  LPIdealclpidl 21331  LPIRclpir 21332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fv 6568  df-lpidl 21333  df-lpir 21334
This theorem is referenced by:  pidufd  33572
  Copyright terms: Public domain W3C validator