![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpirlidllpi | Structured version Visualization version GIF version |
Description: In a principal ideal ring, ideals are principal. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
Ref | Expression |
---|---|
lpirlidllpi.1 | ⊢ 𝐵 = (Base‘𝑅) |
lpirlidllpi.2 | ⊢ 𝐼 = (LIdeal‘𝑅) |
lpirlidllpi.3 | ⊢ 𝐾 = (RSpan‘𝑅) |
lpirlidllpi.4 | ⊢ (𝜑 → 𝑅 ∈ LPIR) |
lpirlidllpi.5 | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
Ref | Expression |
---|---|
lpirlidllpi | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpirlidllpi.4 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ LPIR) | |
2 | eqid 2735 | . . . . 5 ⊢ (LPIdeal‘𝑅) = (LPIdeal‘𝑅) | |
3 | lpirlidllpi.2 | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑅) | |
4 | 2, 3 | islpir 21356 | . . . 4 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅))) |
5 | 1, 4 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅))) |
6 | 5 | simpld 494 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | lpirlidllpi.5 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
8 | 5 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐼 = (LPIdeal‘𝑅)) |
9 | 7, 8 | eleqtrd 2841 | . 2 ⊢ (𝜑 → 𝐽 ∈ (LPIdeal‘𝑅)) |
10 | lpirlidllpi.3 | . . . 4 ⊢ 𝐾 = (RSpan‘𝑅) | |
11 | lpirlidllpi.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
12 | 2, 10, 11 | islpidl 21353 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐽 ∈ (LPIdeal‘𝑅) ↔ ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥}))) |
13 | 12 | biimpa 476 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LPIdeal‘𝑅)) → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
14 | 6, 9, 13 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 {csn 4631 ‘cfv 6563 Basecbs 17245 Ringcrg 20251 LIdealclidl 21234 RSpancrsp 21235 LPIdealclpidl 21348 LPIRclpir 21349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-lpidl 21350 df-lpir 21351 |
This theorem is referenced by: pidufd 33551 |
Copyright terms: Public domain | W3C validator |