| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lpirlidllpi | Structured version Visualization version GIF version | ||
| Description: In a principal ideal ring, ideals are principal. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| lpirlidllpi.1 | ⊢ 𝐵 = (Base‘𝑅) |
| lpirlidllpi.2 | ⊢ 𝐼 = (LIdeal‘𝑅) |
| lpirlidllpi.3 | ⊢ 𝐾 = (RSpan‘𝑅) |
| lpirlidllpi.4 | ⊢ (𝜑 → 𝑅 ∈ LPIR) |
| lpirlidllpi.5 | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| lpirlidllpi | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpirlidllpi.4 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ LPIR) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (LPIdeal‘𝑅) = (LPIdeal‘𝑅) | |
| 3 | lpirlidllpi.2 | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 4 | 2, 3 | islpir 21265 | . . . 4 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅))) |
| 5 | 1, 4 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅))) |
| 6 | 5 | simpld 494 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 7 | lpirlidllpi.5 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
| 8 | 5 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐼 = (LPIdeal‘𝑅)) |
| 9 | 7, 8 | eleqtrd 2833 | . 2 ⊢ (𝜑 → 𝐽 ∈ (LPIdeal‘𝑅)) |
| 10 | lpirlidllpi.3 | . . . 4 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 11 | lpirlidllpi.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 12 | 2, 10, 11 | islpidl 21262 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐽 ∈ (LPIdeal‘𝑅) ↔ ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥}))) |
| 13 | 12 | biimpa 476 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LPIdeal‘𝑅)) → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
| 14 | 6, 9, 13 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {csn 4573 ‘cfv 6481 Basecbs 17120 Ringcrg 20151 LIdealclidl 21143 RSpancrsp 21144 LPIdealclpidl 21257 LPIRclpir 21258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-lpidl 21259 df-lpir 21260 |
| This theorem is referenced by: pidufd 33508 |
| Copyright terms: Public domain | W3C validator |