![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpirlidllpi | Structured version Visualization version GIF version |
Description: In a principal ideal ring, ideals are principal. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
Ref | Expression |
---|---|
lpirlidllpi.1 | ⊢ 𝐵 = (Base‘𝑅) |
lpirlidllpi.2 | ⊢ 𝐼 = (LIdeal‘𝑅) |
lpirlidllpi.3 | ⊢ 𝐾 = (RSpan‘𝑅) |
lpirlidllpi.4 | ⊢ (𝜑 → 𝑅 ∈ LPIR) |
lpirlidllpi.5 | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
Ref | Expression |
---|---|
lpirlidllpi | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpirlidllpi.4 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ LPIR) | |
2 | eqid 2740 | . . . . 5 ⊢ (LPIdeal‘𝑅) = (LPIdeal‘𝑅) | |
3 | lpirlidllpi.2 | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑅) | |
4 | 2, 3 | islpir 21361 | . . . 4 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅))) |
5 | 1, 4 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅))) |
6 | 5 | simpld 494 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | lpirlidllpi.5 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
8 | 5 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐼 = (LPIdeal‘𝑅)) |
9 | 7, 8 | eleqtrd 2846 | . 2 ⊢ (𝜑 → 𝐽 ∈ (LPIdeal‘𝑅)) |
10 | lpirlidllpi.3 | . . . 4 ⊢ 𝐾 = (RSpan‘𝑅) | |
11 | lpirlidllpi.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
12 | 2, 10, 11 | islpidl 21358 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐽 ∈ (LPIdeal‘𝑅) ↔ ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥}))) |
13 | 12 | biimpa 476 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LPIdeal‘𝑅)) → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
14 | 6, 9, 13 | syl2anc 583 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {csn 4648 ‘cfv 6573 Basecbs 17258 Ringcrg 20260 LIdealclidl 21239 RSpancrsp 21240 LPIdealclpidl 21353 LPIRclpir 21354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-lpidl 21355 df-lpir 21356 |
This theorem is referenced by: pidufd 33536 |
Copyright terms: Public domain | W3C validator |