![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpirlidllpi | Structured version Visualization version GIF version |
Description: In a principal ideal ring, ideals are principal. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
Ref | Expression |
---|---|
lpirlidllpi.1 | ⊢ 𝐵 = (Base‘𝑅) |
lpirlidllpi.2 | ⊢ 𝐼 = (LIdeal‘𝑅) |
lpirlidllpi.3 | ⊢ 𝐾 = (RSpan‘𝑅) |
lpirlidllpi.4 | ⊢ (𝜑 → 𝑅 ∈ LPIR) |
lpirlidllpi.5 | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
Ref | Expression |
---|---|
lpirlidllpi | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpirlidllpi.4 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ LPIR) | |
2 | eqid 2725 | . . . . 5 ⊢ (LPIdeal‘𝑅) = (LPIdeal‘𝑅) | |
3 | lpirlidllpi.2 | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑅) | |
4 | 2, 3 | islpir 21235 | . . . 4 ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅))) |
5 | 1, 4 | sylib 217 | . . 3 ⊢ (𝜑 → (𝑅 ∈ Ring ∧ 𝐼 = (LPIdeal‘𝑅))) |
6 | 5 | simpld 493 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | lpirlidllpi.5 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
8 | 5 | simprd 494 | . . 3 ⊢ (𝜑 → 𝐼 = (LPIdeal‘𝑅)) |
9 | 7, 8 | eleqtrd 2827 | . 2 ⊢ (𝜑 → 𝐽 ∈ (LPIdeal‘𝑅)) |
10 | lpirlidllpi.3 | . . . 4 ⊢ 𝐾 = (RSpan‘𝑅) | |
11 | lpirlidllpi.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
12 | 2, 10, 11 | islpidl 21232 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐽 ∈ (LPIdeal‘𝑅) ↔ ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥}))) |
13 | 12 | biimpa 475 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LPIdeal‘𝑅)) → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
14 | 6, 9, 13 | syl2anc 582 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐽 = (𝐾‘{𝑥})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 {csn 4630 ‘cfv 6549 Basecbs 17183 Ringcrg 20185 LIdealclidl 21114 RSpancrsp 21115 LPIdealclpidl 21227 LPIRclpir 21228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6501 df-fun 6551 df-fv 6557 df-lpidl 21229 df-lpir 21230 |
This theorem is referenced by: pidufd 33358 |
Copyright terms: Public domain | W3C validator |