| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoxopynvov0 | Structured version Visualization version GIF version | ||
| Description: If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| Ref | Expression |
|---|---|
| mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
| Ref | Expression |
|---|---|
| mpoxopynvov0 | ⊢ (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxopn0yelv.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
| 2 | 1 | mpoxopynvov0g 8153 | . . 3 ⊢ (((𝑉 ∈ V ∧ 𝑊 ∈ V) ∧ 𝐾 ∉ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
| 3 | 2 | ex 412 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅)) |
| 4 | 1 | mpoxopxprcov0 8156 | . . 3 ⊢ (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
| 5 | 4 | a1d 25 | . 2 ⊢ (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅)) |
| 6 | 3, 5 | pm2.61i 182 | 1 ⊢ (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∉ wnel 3034 Vcvv 3438 ∅c0 4284 〈cop 4583 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 1st c1st 7928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 |
| This theorem is referenced by: mpoxopoveqd 8160 |
| Copyright terms: Public domain | W3C validator |