MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopynvov0 Structured version   Visualization version   GIF version

Theorem mpoxopynvov0 8242
Description: If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopynvov0 (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑦)   𝐾(𝑦)   𝑉(𝑦)   𝑊(𝑦)

Proof of Theorem mpoxopynvov0
StepHypRef Expression
1 mpoxopn0yelv.f . . . 4 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
21mpoxopynvov0g 8238 . . 3 (((𝑉 ∈ V ∧ 𝑊 ∈ V) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
32ex 412 . 2 ((𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅))
41mpoxopxprcov0 8241 . . 3 (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
54a1d 25 . 2 (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅))
63, 5pm2.61i 182 1 (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wnel 3044  Vcvv 3478  c0 4339  cop 4637  cfv 6563  (class class class)co 7431  cmpo 7433  1st c1st 8011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014
This theorem is referenced by:  mpoxopoveqd  8245
  Copyright terms: Public domain W3C validator