MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopynvov0 Structured version   Visualization version   GIF version

Theorem mpoxopynvov0 8143
Description: If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopynvov0 (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑦)   𝐾(𝑦)   𝑉(𝑦)   𝑊(𝑦)

Proof of Theorem mpoxopynvov0
StepHypRef Expression
1 mpoxopn0yelv.f . . . 4 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
21mpoxopynvov0g 8139 . . 3 (((𝑉 ∈ V ∧ 𝑊 ∈ V) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
32ex 412 . 2 ((𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅))
41mpoxopxprcov0 8142 . . 3 (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
54a1d 25 . 2 (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅))
63, 5pm2.61i 182 1 (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  wnel 3030  Vcvv 3434  c0 4281  cop 4580  cfv 6477  (class class class)co 7341  cmpo 7343  1st c1st 7914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917
This theorem is referenced by:  mpoxopoveqd  8146
  Copyright terms: Public domain W3C validator