Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoxopynvov0 | Structured version Visualization version GIF version |
Description: If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
Ref | Expression |
---|---|
mpoxopynvov0 | ⊢ (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopn0yelv.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
2 | 1 | mpoxopynvov0g 8100 | . . 3 ⊢ (((𝑉 ∈ V ∧ 𝑊 ∈ V) ∧ 𝐾 ∉ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
3 | 2 | ex 413 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅)) |
4 | 1 | mpoxopxprcov0 8103 | . . 3 ⊢ (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
5 | 4 | a1d 25 | . 2 ⊢ (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅)) |
6 | 3, 5 | pm2.61i 182 | 1 ⊢ (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∉ wnel 3046 Vcvv 3441 ∅c0 4269 〈cop 4579 ‘cfv 6479 (class class class)co 7337 ∈ cmpo 7339 1st c1st 7897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 |
This theorem is referenced by: mpoxopoveqd 8107 |
Copyright terms: Public domain | W3C validator |