MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopynvov0 Structured version   Visualization version   GIF version

Theorem mpoxopynvov0 7877
Description: If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopynvov0 (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑦)   𝐾(𝑦)   𝑉(𝑦)   𝑊(𝑦)

Proof of Theorem mpoxopynvov0
StepHypRef Expression
1 mpoxopn0yelv.f . . . 4 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
21mpoxopynvov0g 7873 . . 3 (((𝑉 ∈ V ∧ 𝑊 ∈ V) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
32ex 415 . 2 ((𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅))
41mpoxopxprcov0 7876 . . 3 (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
54a1d 25 . 2 (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅))
63, 5pm2.61i 184 1 (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  wnel 3122  Vcvv 3491  c0 4284  cop 4566  cfv 6348  (class class class)co 7149  cmpo 7151  1st c1st 7680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7682  df-2nd 7683
This theorem is referenced by:  mpoxopoveqd  7880
  Copyright terms: Public domain W3C validator