Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpstval Structured version   Visualization version   GIF version

Theorem mpstval 35215
Description: A pre-statement is an ordered triple, whose first member is a symmetric set of disjoint variable conditions, whose second member is a finite set of expressions, and whose third member is an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstval.v 𝑉 = (mDVβ€˜π‘‡)
mpstval.e 𝐸 = (mExβ€˜π‘‡)
mpstval.p 𝑃 = (mPreStβ€˜π‘‡)
Assertion
Ref Expression
mpstval 𝑃 = (({𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} Γ— (𝒫 𝐸 ∩ Fin)) Γ— 𝐸)
Distinct variable groups:   𝑇,𝑑   𝑉,𝑑
Allowed substitution hints:   𝑃(𝑑)   𝐸(𝑑)

Proof of Theorem mpstval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 mpstval.p . 2 𝑃 = (mPreStβ€˜π‘‡)
2 fveq2 6894 . . . . . . . . 9 (𝑑 = 𝑇 β†’ (mDVβ€˜π‘‘) = (mDVβ€˜π‘‡))
3 mpstval.v . . . . . . . . 9 𝑉 = (mDVβ€˜π‘‡)
42, 3eqtr4di 2783 . . . . . . . 8 (𝑑 = 𝑇 β†’ (mDVβ€˜π‘‘) = 𝑉)
54pweqd 4620 . . . . . . 7 (𝑑 = 𝑇 β†’ 𝒫 (mDVβ€˜π‘‘) = 𝒫 𝑉)
65rabeqdv 3435 . . . . . 6 (𝑑 = 𝑇 β†’ {𝑑 ∈ 𝒫 (mDVβ€˜π‘‘) ∣ ◑𝑑 = 𝑑} = {𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑})
7 fveq2 6894 . . . . . . . . 9 (𝑑 = 𝑇 β†’ (mExβ€˜π‘‘) = (mExβ€˜π‘‡))
8 mpstval.e . . . . . . . . 9 𝐸 = (mExβ€˜π‘‡)
97, 8eqtr4di 2783 . . . . . . . 8 (𝑑 = 𝑇 β†’ (mExβ€˜π‘‘) = 𝐸)
109pweqd 4620 . . . . . . 7 (𝑑 = 𝑇 β†’ 𝒫 (mExβ€˜π‘‘) = 𝒫 𝐸)
1110ineq1d 4210 . . . . . 6 (𝑑 = 𝑇 β†’ (𝒫 (mExβ€˜π‘‘) ∩ Fin) = (𝒫 𝐸 ∩ Fin))
126, 11xpeq12d 5708 . . . . 5 (𝑑 = 𝑇 β†’ ({𝑑 ∈ 𝒫 (mDVβ€˜π‘‘) ∣ ◑𝑑 = 𝑑} Γ— (𝒫 (mExβ€˜π‘‘) ∩ Fin)) = ({𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} Γ— (𝒫 𝐸 ∩ Fin)))
1312, 9xpeq12d 5708 . . . 4 (𝑑 = 𝑇 β†’ (({𝑑 ∈ 𝒫 (mDVβ€˜π‘‘) ∣ ◑𝑑 = 𝑑} Γ— (𝒫 (mExβ€˜π‘‘) ∩ Fin)) Γ— (mExβ€˜π‘‘)) = (({𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} Γ— (𝒫 𝐸 ∩ Fin)) Γ— 𝐸))
14 df-mpst 35173 . . . 4 mPreSt = (𝑑 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDVβ€˜π‘‘) ∣ ◑𝑑 = 𝑑} Γ— (𝒫 (mExβ€˜π‘‘) ∩ Fin)) Γ— (mExβ€˜π‘‘)))
153fvexi 6908 . . . . . . . 8 𝑉 ∈ V
1615pwex 5379 . . . . . . 7 𝒫 𝑉 ∈ V
1716rabex 5334 . . . . . 6 {𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} ∈ V
188fvexi 6908 . . . . . . . 8 𝐸 ∈ V
1918pwex 5379 . . . . . . 7 𝒫 𝐸 ∈ V
2019inex1 5317 . . . . . 6 (𝒫 𝐸 ∩ Fin) ∈ V
2117, 20xpex 7754 . . . . 5 ({𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} Γ— (𝒫 𝐸 ∩ Fin)) ∈ V
2221, 18xpex 7754 . . . 4 (({𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} Γ— (𝒫 𝐸 ∩ Fin)) Γ— 𝐸) ∈ V
2313, 14, 22fvmpt 7002 . . 3 (𝑇 ∈ V β†’ (mPreStβ€˜π‘‡) = (({𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} Γ— (𝒫 𝐸 ∩ Fin)) Γ— 𝐸))
24 xp0 6162 . . . . 5 (({𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} Γ— (𝒫 𝐸 ∩ Fin)) Γ— βˆ…) = βˆ…
2524eqcomi 2734 . . . 4 βˆ… = (({𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} Γ— (𝒫 𝐸 ∩ Fin)) Γ— βˆ…)
26 fvprc 6886 . . . 4 (Β¬ 𝑇 ∈ V β†’ (mPreStβ€˜π‘‡) = βˆ…)
27 fvprc 6886 . . . . . 6 (Β¬ 𝑇 ∈ V β†’ (mExβ€˜π‘‡) = βˆ…)
288, 27eqtrid 2777 . . . . 5 (Β¬ 𝑇 ∈ V β†’ 𝐸 = βˆ…)
2928xpeq2d 5707 . . . 4 (Β¬ 𝑇 ∈ V β†’ (({𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} Γ— (𝒫 𝐸 ∩ Fin)) Γ— 𝐸) = (({𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} Γ— (𝒫 𝐸 ∩ Fin)) Γ— βˆ…))
3025, 26, 293eqtr4a 2791 . . 3 (Β¬ 𝑇 ∈ V β†’ (mPreStβ€˜π‘‡) = (({𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} Γ— (𝒫 𝐸 ∩ Fin)) Γ— 𝐸))
3123, 30pm2.61i 182 . 2 (mPreStβ€˜π‘‡) = (({𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} Γ— (𝒫 𝐸 ∩ Fin)) Γ— 𝐸)
321, 31eqtri 2753 1 𝑃 = (({𝑑 ∈ 𝒫 𝑉 ∣ ◑𝑑 = 𝑑} Γ— (𝒫 𝐸 ∩ Fin)) Γ— 𝐸)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1533   ∈ wcel 2098  {crab 3419  Vcvv 3463   ∩ cin 3944  βˆ…c0 4323  π’« cpw 4603   Γ— cxp 5675  β—‘ccnv 5676  β€˜cfv 6547  Fincfn 8962  mExcmex 35147  mDVcmdv 35148  mPreStcmpst 35153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6499  df-fun 6549  df-fv 6555  df-mpst 35173
This theorem is referenced by:  elmpst  35216  mpstssv  35219
  Copyright terms: Public domain W3C validator