Step | Hyp | Ref
| Expression |
1 | | mpstval.p |
. 2
⊢ 𝑃 = (mPreSt‘𝑇) |
2 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (mDV‘𝑡) = (mDV‘𝑇)) |
3 | | mpstval.v |
. . . . . . . . 9
⊢ 𝑉 = (mDV‘𝑇) |
4 | 2, 3 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (mDV‘𝑡) = 𝑉) |
5 | 4 | pweqd 4549 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → 𝒫 (mDV‘𝑡) = 𝒫 𝑉) |
6 | 5 | rabeqdv 3409 |
. . . . . 6
⊢ (𝑡 = 𝑇 → {𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ ◡𝑑 = 𝑑} = {𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑}) |
7 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇)) |
8 | | mpstval.e |
. . . . . . . . 9
⊢ 𝐸 = (mEx‘𝑇) |
9 | 7, 8 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸) |
10 | 9 | pweqd 4549 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → 𝒫 (mEx‘𝑡) = 𝒫 𝐸) |
11 | 10 | ineq1d 4142 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (𝒫 (mEx‘𝑡) ∩ Fin) = (𝒫 𝐸 ∩ Fin)) |
12 | 6, 11 | xpeq12d 5611 |
. . . . 5
⊢ (𝑡 = 𝑇 → ({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) = ({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin))) |
13 | 12, 9 | xpeq12d 5611 |
. . . 4
⊢ (𝑡 = 𝑇 → (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) ×
(mEx‘𝑡)) = (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸)) |
14 | | df-mpst 33355 |
. . . 4
⊢ mPreSt =
(𝑡 ∈ V ↦
(({𝑑 ∈ 𝒫
(mDV‘𝑡) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) ×
(mEx‘𝑡))) |
15 | 3 | fvexi 6770 |
. . . . . . . 8
⊢ 𝑉 ∈ V |
16 | 15 | pwex 5298 |
. . . . . . 7
⊢ 𝒫
𝑉 ∈ V |
17 | 16 | rabex 5251 |
. . . . . 6
⊢ {𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} ∈ V |
18 | 8 | fvexi 6770 |
. . . . . . . 8
⊢ 𝐸 ∈ V |
19 | 18 | pwex 5298 |
. . . . . . 7
⊢ 𝒫
𝐸 ∈ V |
20 | 19 | inex1 5236 |
. . . . . 6
⊢
(𝒫 𝐸 ∩
Fin) ∈ V |
21 | 17, 20 | xpex 7581 |
. . . . 5
⊢ ({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ∈ V |
22 | 21, 18 | xpex 7581 |
. . . 4
⊢ (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) ∈ V |
23 | 13, 14, 22 | fvmpt 6857 |
. . 3
⊢ (𝑇 ∈ V →
(mPreSt‘𝑇) = (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸)) |
24 | | xp0 6050 |
. . . . 5
⊢ (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × ∅) =
∅ |
25 | 24 | eqcomi 2747 |
. . . 4
⊢ ∅ =
(({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ×
∅) |
26 | | fvprc 6748 |
. . . 4
⊢ (¬
𝑇 ∈ V →
(mPreSt‘𝑇) =
∅) |
27 | | fvprc 6748 |
. . . . . 6
⊢ (¬
𝑇 ∈ V →
(mEx‘𝑇) =
∅) |
28 | 8, 27 | syl5eq 2791 |
. . . . 5
⊢ (¬
𝑇 ∈ V → 𝐸 = ∅) |
29 | 28 | xpeq2d 5610 |
. . . 4
⊢ (¬
𝑇 ∈ V → (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) = (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ×
∅)) |
30 | 25, 26, 29 | 3eqtr4a 2805 |
. . 3
⊢ (¬
𝑇 ∈ V →
(mPreSt‘𝑇) = (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸)) |
31 | 23, 30 | pm2.61i 182 |
. 2
⊢
(mPreSt‘𝑇) =
(({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) |
32 | 1, 31 | eqtri 2766 |
1
⊢ 𝑃 = (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) |