Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpstval Structured version   Visualization version   GIF version

Theorem mpstval 35507
Description: A pre-statement is an ordered triple, whose first member is a symmetric set of disjoint variable conditions, whose second member is a finite set of expressions, and whose third member is an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstval.v 𝑉 = (mDV‘𝑇)
mpstval.e 𝐸 = (mEx‘𝑇)
mpstval.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
mpstval 𝑃 = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸)
Distinct variable groups:   𝑇,𝑑   𝑉,𝑑
Allowed substitution hints:   𝑃(𝑑)   𝐸(𝑑)

Proof of Theorem mpstval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mpstval.p . 2 𝑃 = (mPreSt‘𝑇)
2 fveq2 6826 . . . . . . . . 9 (𝑡 = 𝑇 → (mDV‘𝑡) = (mDV‘𝑇))
3 mpstval.v . . . . . . . . 9 𝑉 = (mDV‘𝑇)
42, 3eqtr4di 2782 . . . . . . . 8 (𝑡 = 𝑇 → (mDV‘𝑡) = 𝑉)
54pweqd 4570 . . . . . . 7 (𝑡 = 𝑇 → 𝒫 (mDV‘𝑡) = 𝒫 𝑉)
65rabeqdv 3412 . . . . . 6 (𝑡 = 𝑇 → {𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ 𝑑 = 𝑑} = {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑})
7 fveq2 6826 . . . . . . . . 9 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
8 mpstval.e . . . . . . . . 9 𝐸 = (mEx‘𝑇)
97, 8eqtr4di 2782 . . . . . . . 8 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
109pweqd 4570 . . . . . . 7 (𝑡 = 𝑇 → 𝒫 (mEx‘𝑡) = 𝒫 𝐸)
1110ineq1d 4172 . . . . . 6 (𝑡 = 𝑇 → (𝒫 (mEx‘𝑡) ∩ Fin) = (𝒫 𝐸 ∩ Fin))
126, 11xpeq12d 5654 . . . . 5 (𝑡 = 𝑇 → ({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) = ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)))
1312, 9xpeq12d 5654 . . . 4 (𝑡 = 𝑇 → (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) × (mEx‘𝑡)) = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸))
14 df-mpst 35465 . . . 4 mPreSt = (𝑡 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) × (mEx‘𝑡)))
153fvexi 6840 . . . . . . . 8 𝑉 ∈ V
1615pwex 5322 . . . . . . 7 𝒫 𝑉 ∈ V
1716rabex 5281 . . . . . 6 {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ∈ V
188fvexi 6840 . . . . . . . 8 𝐸 ∈ V
1918pwex 5322 . . . . . . 7 𝒫 𝐸 ∈ V
2019inex1 5259 . . . . . 6 (𝒫 𝐸 ∩ Fin) ∈ V
2117, 20xpex 7693 . . . . 5 ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ∈ V
2221, 18xpex 7693 . . . 4 (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) ∈ V
2313, 14, 22fvmpt 6934 . . 3 (𝑇 ∈ V → (mPreSt‘𝑇) = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸))
24 xp0 6111 . . . . 5 (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × ∅) = ∅
2524eqcomi 2738 . . . 4 ∅ = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × ∅)
26 fvprc 6818 . . . 4 𝑇 ∈ V → (mPreSt‘𝑇) = ∅)
27 fvprc 6818 . . . . . 6 𝑇 ∈ V → (mEx‘𝑇) = ∅)
288, 27eqtrid 2776 . . . . 5 𝑇 ∈ V → 𝐸 = ∅)
2928xpeq2d 5653 . . . 4 𝑇 ∈ V → (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × ∅))
3025, 26, 293eqtr4a 2790 . . 3 𝑇 ∈ V → (mPreSt‘𝑇) = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸))
3123, 30pm2.61i 182 . 2 (mPreSt‘𝑇) = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸)
321, 31eqtri 2752 1 𝑃 = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  cin 3904  c0 4286  𝒫 cpw 4553   × cxp 5621  ccnv 5622  cfv 6486  Fincfn 8879  mExcmex 35439  mDVcmdv 35440  mPreStcmpst 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-mpst 35465
This theorem is referenced by:  elmpst  35508  mpstssv  35511
  Copyright terms: Public domain W3C validator